40th Anniversary

Feasibility study for implementation of a Binary power plant in Lake Abhe geothermal area with a particular hot arid climate,

Djibouti

Hamoud Souleiman Cheik

MSc student UNU-GTP

Presentation Overview

- Introduction
- Djibouti in the regional geology
- Lake Abhe Geothermal Field
- Objective
- Results
- Conclusion

Introduction: Djibouti

Djibouti is located on the East Coast of Africa between Ethiopia and Somalia, the entrance of the Red Sea in the extreme West of the Aden Gulf.

• Independence day: June 27th 1977

Total area: 23.200 km²Population: 900.000

National Languages : Somali & Afar & Arabic

Official languages: French and Arabic

• End altitudes: -155m (Lac Assal) +2021 m (Moussa Ali)

Nombers of regions : 6

 Currency: Djibouti Franc (FDJ), pegged at a fixed rate to the dollar. 1 \$ US = 177,721 FDJ

April 2018

Introduction: Geology of Djibouti unique in terms of geodynamics activity

- The geologic characteristics of the territory of the Republic of Djibouti are exceptionally favourable for the development of Geothermal Energy.
- Djibouti includes the Afar depression, which is part of the East African Rift, located at the intersection of three important tectonic structures.

Volcanoes with known or inferred Holocene eruptions Source: http://www.volcano.si.edu/gvp/

Lake Abhe Geothermal Field (LAGF)

Lake Abhe is located in the south-western region of the Republic of Djibouti, on the border with Ethiopia.

LAGF is marked by hydrothermal activities which are manifested by:

- hot springs (>90°C);
- Fumaroles
- Travertines
- Alteration
- The total dissolved solids range from 1700 to 3400 mg/l.
- The result of geothermometer of all studies indicated a reservoir range from 110 to 176°C
- The estimated total water flow from the manifestations is around 20-25 L/s.

Source: https://upload.wikimedia.org/wikipedia/commons/f/f3/Lac Abbe-01.JPG

Source : JICA (2014).

LAGF: 2D model

The conductive zones go from 900 m up to 1500 m before showing higher resistivity

Figure 5: Cross section. A well drilled to more than 1000 m depth, intersecting one of the main permeable fault in the system is shown as a red vertical line on the cross section (ODDEG-ISOR, 2016).

Estimation of Geothermal Resources

Geothermal resource is calculated by the Monte Carlo Volumetric Method

			Most		S
Parameter	Unit	Minimum	likely	Maximum	Distribution
Reservoir Area (A)	km²	70.0	75.0	88.0	Beta
Reservoir Thickness (H)	m	800	1000	1200	Beta
Reservoir Temperature (T)	°C	110	150	176	Beta
Recovery Factor (R)	%	5%	10%	20%	Beta
Utilization Factor (u)	%	35%	40%	45%	Beta
Porosity (fi)	%	5%		20%	Even
	kJ/m³				
Specific Heat of Rock (CR)	/°C		950		Fixed
Average Reservoir Depth (D)	m		1500		Fixed
Rejection Temperature (Ta)	°C		90		Fixed
Plant Capacity Factor (F)	%		95%		Fixed
Project Lifetime	years		30		Fixed

•	The results of the simulation show that the Lake Abhe
	reservoir has potential between 12,8 and 16,1 MWe
	for 30 years.

•	The cumulativ	e frequenc	y distribution	indicates that
	the most likely	value for	the reserve is	14,45 MWe.

Capacity (MW)			
90%	Most Probable	10%	
8,8	14,45	33,9	

April 2018

Objective

- The figure depict the variation of the ambient temperature and how the latter affects the power output of the plant.
- The backbone of the thesis will be how to deal with the hot arid climate in order to improve the efficiency of the binary Power plant.

Methodology

- Resource assessment
- Plant technology options
 - Binary with air cooling condenser
 - Binary with water cooling condenser
 - Binary with cooled condenser using cooling tower
 - And finally Solar-geothermal hybrid plant
- Programming in EES
- Results and preferred technology
- Commercial aspects
 - Financial model
- Conclusion

Results

m₁₀ = 233.7 [kg/s] m_e = 443 [kg/s] $h_{10} = 122 [kJ/kg]$ $h_{11} = 122 [kJ/kg]$ h₆ = 613.5 [kJ/kg] T₁₀ = 107.7 [°C] $h_{12} = 68 [kJ/kg]$ T₁₂ = 67.28 [°C] P₁₂ = 1.513 [bara] T₂₁ = 35 [°C] h₁₂ = 68 [kJ/kg] Lake Abhe Production Wells Pump 1 Water Cooled Feed pump Condenser $T_{20} = 28 \, [^{\circ}C]$ m₂₀ = 3163 [kg/s T₁₄ = 35.39 [°C] $T_{13} = 35 [^{\circ}C]$ $h_{14} = -325.7 [kJ/kg]$ $h_{13} = -327.1 [kJ/kg]$ o = 90 f°C1 m₁₄ = 233.7 [kg/s] \dot{m}_{13} = 233.7 [kg/s] m₈ = 443 [kg/s] P₁₃ = 1.513 [bara] P₁₄ = 8.478 [bara] h₈ = 377.4 [kJ/kg] Lake Abhe Reinjection wells

Figure 8: Schematic of the power plant with ACC

Figure 9: Schematic of the power plant with WCC

- The net power output of air cooled condenser calculated with the annual average ambient temperature (30°C) is 7740 kWe.
- The net power output of the water cooling temperature calculated with the annual average temperature of Lake Abhe water (28°C) is 9885 kWe.
- Comparing the two methods the net power output increase 27.7% for the benefit of water cooling condenser. However, the required amount of water for this case is calculated to be about 99.7 million tons per yr. (Quantities of LA water = 3 billion m³)

April 2018

Results cont'd

Table 3: Results of the scenarios

Parameters	Value for basic model	Hybrid	Units
	ACC	solar-	
		geothermal	
Gross power output	11706	14778	kWe
Net power output	8805	11382	kWe
Auxiliary power	2902	3396	kWe
% of Auxiliary to Gross power	24.8	23	%
Power fan	1698	2193	kWe
% fan in Auxiliary	58.5	64.6	%
Efficiency	0.12	0.11	[-]
Specific Power Output (SPO)	19.87	25.69	kW/(kg/s)
Geothermal fluid flowrate	443	443	Kg/s
ORC WF mass flow (R245fa)	466.3	466.3	Kg/s
Solar WF mass flow (Benzene)	[-]	445.9	Kg/s

Geothermal heat exchanger Solar superheater Turbine Main pump Air-cooled condensor

Figure 11:Simplified process flow diagram of the hybrid solargeothermal power plant.

The both curves have the same trend with a gap between the both which is reducing when the ambient temperature increases.

The temperature at the condenser is kept fix at 46°C

Figure 12: Comparison of the net power of the hybrid and ACC models.

Figure 10: temperature—entropy diagram of the

hybrid plant using the working fluid superheating operating mode. Hamoud Souleiman, Djibouti - 40th Anniversary of UNU-GTP

Thank you for your attention

