40th Anniversary

Performance of AERMOD modelling of hydrogen sulfide (H₂S) concentration from geothermal power plants in Ulubelu, Indonesia, and Hellisheiði-Nesjavellir, Iceland

Irma Khoirunissa

MSc student UNU-GTP

Introduction

- Energy policy and H₂S air quality policy
 - Geothermal power in Indonesia (7,242 MW by 2025) and Iceland (energy consumption at 2.8% by 2020)
 - H₂S air quality policy (i.e., the standards of odor, ocupational health, and public health)
 - Taking rightful decisions in the setting up and reviewing regulation policy and mitigation action (i.e., underestimation or overestimation)
- Hydrogen Sulfide (H₂S)
 - Colorless, heavier density than air, rotten egg smell (i.e. low concentration), loss of smell (i.e. high concentration)
 - Eyes, skin, and respiratory irritations
- AERMOD Viewtm Version 9.4,2017
 - Examined H₂S concentration by seasons
 - Model performance for the time scales at 1-hr, 8-hr, 24-hr, annual average

Project Location (Indonesia)

Project Location (Iceland)

Input data simulations and model performance

Ulubelu Power Plant (UBL case)	Hellisheiði and Nesjavellir PP (HEL-NES case)
Simulation of H2S concentration	
Met data; UBL met data (UBL)*	Reykjavik (REYK), and Hellisheiði met stations (HELS)*
Input; rural, elevated terrain option	Urban, flat terrain option
H2S flowrate; Units 1 and 2 (21.05 g/s) and Unit 3 and 4 (16.57 and 21.35 g/s),	Hellisheiði (540 g/s) and Nesjavellir (358 g/s)
Receptors in Ulubelu village, dry season, time scales of 1-hr,8-hr,24-hr, and annual average againts H ₂ S legislations	Receptors in Reykjavik greater area and Hveragedi, winter season, time scales of 24-hr and annual average
Model performance	
-Observation points; Mekarsari, Ngarip and Karang rejo villages, PP units 3&4 (sources < 3 km) -Sampling 28-31 August 2017 -Met data;UBL -SD, RMSE, correlation (Taylor diagram)	- Grensasvegur (GRE), Hvaleyrarholt (HEH), and Norðlingaholt (NLH) $\rm H_2S$ stations, data obtained; 1 st March 2017 and 9 th November 2015 and 2012-2016 -Metdata; Straumvik (STRM), Reykjavik, and Hellisheiði met stations** (The distance of the sources < 4 km $-$ 30 km)

Simulation of H₂S concentration from the Ulubelu power plants

- H₂S concentrations < The WHO air quality quideline (150 μg/m³ for 24-hour)

Irma Khoirunissa, Indonesia - 40th Anniversary of UNU-GTP

Simulation of H₂S concentration from the Ulubelu power plants

*The predicted H_2S concentration < the Indonesian occupational health limit (1,400 μ g/m³ for 8-hour averages)

Simulation of H₂S concentration from the Hellisheiði and Nesjavellir power plants

Annual averages period

UNITED NATIONS UNIVERSITY

Irma Khoirunissa, Indonesia - 40th Anniversary of UNU-GTP

Simulation of H₂S concentration from the Hellisheiði and Nesjavellir power plants

Irma Khoirunissa, Indonesia - 40th Anniversary of UNU-GTP

Model performance

A. UBL case

Red square plus for the results model at 8 hr and 24-hr averages Green circle cross for results model at 24 hr averages

B.1 HEL-NES case for 1-hr averages

Model performance

REYK (triangle) STRM (green star)

Conclusions

- The models performed better for a long-term period than a short-term period (except UBL case model A.1 24-hr)
 - the distance of the receptors and emission sources (i.e. UBL < 3 km, HEL-HES; 30 km)
 - weather conditions (i.e., wind direction of REYK and HELS met stations)
- Evaluating the level of H₂S concentration based on seasons
 - HEL-NES; the concentration is expected to be higher during the winter season
 - UBL case; the dry season
- Mitigations
 - H₂S air pollution regulation and methods to predict H₂S pollutant
 - integrating the policy of EIA (prior project started) with H₂S air pollution guidelines (operation stage)
 - combines the multi-disciplinary approach

"The only way forward, if we are going to improve the quality of the environment, is to get everybody involved "R. Rogers

Thank you

