DEN 4. NORDISKE HYDROLOGKONFERANSE
REYKJAVÍK 10.-15. AUGUST 1964

ISLANDS HYDROLOGI

Erindi flutt á ráðstefnunni, aukaeintök
DEN 4. NORDISKE HYDROLOGKONFERANSE
REYKJAVÍK 10.-15. AUGUST 1964

ISLANDS HYDROLOGI

Erindi flutt á ráðstefnunni, aukaeintök
Emne: 1. ÍSLANDS HYDROLOGÍ

111 Overflatehydrologi: S. Rist hydrolog
112 Nedbör og temperatur: Adda Bára Sigfúsdóttir meteorolog
113 Geologiske betingelser for islandske flodtyper: G. Kjartansson mag. scient.
114 Breer og bremålinger: J. Eythorsson meteorolog
115 Jökulhlaup och deras taxering: S. Thorarinsson docent
116 Geothermal activity in Iceland: G. Pálsson geofysiker
117 Grundvatten och tektonik i närheten av Reykjavík och Hafnarfjörður: J. Jónsson fig. lic.
Sigurjón Rist;

OVERFLATEHYDROLOGI

Hensikten med foredraget er å gi en orienterende skildring av de generelle hydrologiske forhold i Island. Vi tar utgangspunkt i overflatehydrologien. Mer vekt er lagt på den fysiske sammenheng enn å rammé opp data, lett tilgjengelige i andre kilder.

I de etterfølgende foredrag behandler andre øvrige innflytelsesrike faktorer i Islands hydrologi. Tilsammen skal foredragene gi et grunnriss av landets hydrologi.

1. Topografi og avløpsforhold

Island ligger i Atlanterhavet 990 km vest for Norge omslynet av varme havstrømmer som kommer helt fra Floridakysten. Fra Islands vestkyst over til Grönland, som er kjent for kalde luftmasser, er det bare 287 km. Langs Grönlands østkyst går en sørøvende kald havstrøm, som fører sydover store ismasser fra Polhavet. For i tida kom drivisen i årrekker helt opp til Island og gjenpakket nordkystens fjorder. I de senere år, unntatt i 1949, er det bare enkelte isfjell som driver for vind og strøm opp til nordvestkysten. Våren 1949 var det store ismasser i havet utenfor nordkysten; vårloisingen satte først inn for alvor etter midten av juni, mot vanlig i april eller mai. Dette medførte særlig store vårflommer, da dal- og høyfjellsflommmene falt sammen. Men våren 1964 er det helt motsatt, nesten ingen sne under 600 m, takket være en vedvarende tøværssperiode fra utpå vinteren. Ingen må oppfatte værforholdene 1949 og 1964 som noe unormale, store avvikelse fra år til annet er det normale. Værforholdene fra dag til dag avhenger av, hva som har overtaket, de kalde arktiske luftstrømmer fra nord som blåser over øya eller luftmasser fra de relativt varme havområder i syd. Dette medfører at man ikke kan peke på noen bestemte isleggings- eller isløsnings tider. Det viser seg at det i tidsrummet sept-april inntrer ganske mange korte islegnings og isløsnings perioder, kanskje fra 5 til 10, mere eller mindre ufullstendige d.v.s. isleggingen eller isløsningen er ikke ført helt frem når været slår om igjen, isleggingen kommer tidligere i gang om hösten i fjellet enn på lavlandet og
Fig. 1. Topografien.

Landets areal er:
103106 km² (+ Surtsøy)

1. 2119 - 1500 m o.h.,
2. 1500 - 1000 "
3. 1000 - 400 "
tilsammen ca. 60000 km²

Under 400 m ca. 43000 km²

Isen står der også lenger ut på våren, men allikevel er tallet på isleggnings-
og isløsningstider vanligvis adskillig lavere i fjellet enn på lavlandet.
Dette skyldes at i fjellet ligger isdekket forholdsvis stabilt ut vinteren, hvis
vi unntar på elver dannet av store oppkommer, de såkalte "linda"-elver.
Disse fryser ikke nær oppkommene og har hele velen til havs et meget
ustabilt isdekte,

Man skal dog alltid være forberedt på tover opp til de høyeste
fjelltrakter midt på vinteren medførende voldsom flom og isgang. Men det
vanligste er at en lavvannsperiode begynner i desember og strekker seg ut
over månedene januar, februar og blir særlig utpreget hvis den vedvarer
uavbrutt ut april. Vårflommene setter vanligvis inn i april på sydlandet,
midten av vestlandet og nord- og østlandets laveste strekk. Ellers er mai den
mest utpregede vårflommsmåned. I midten av nordlandets høyfjell når
vårflommene vanligvis sitt maksimum i juni. Fra breene er vannføringa
størst i juli og august. Men juli og august er også utpregede lavvannsmåneder
for store deler av landet, særlig i øst og vest og på vestliggende deler av
nordlandet, hvor de såkaldte "draga"elver er. Så len er borte i et par uker
umtatt i enkelte høyfjell, nedbören er liten fra april til september. Den
spesifikke avrinning blir da veldig liten fra de nakne og forholdsvis steile
fjelltrakter av vannrett grunnberg.

September måned ligger på overgangen til de nedbørsrike måneder
økt. og nov. Draga-elveene er følsomme, der følger vannføringa nesten helt
nedbören, som nå faller som regn. Linda-elveenes vannføring øker ikke
nevneverdig. Nær oppkommene avleses vannstanden presis på samme cm
selvom det regner hver dag, uveis. Bre-elveene går med i slutten av august
eller i september, det er når det fryser på breene om natta. Vannføringa øker ikke i vesentlig grad i den våte høstperioden da nedbøren faller som sne på de hoyere brestrøk. De største høstflommer kommer når det etter i med sne i fселlet og i de lavere strøk og så blir etterfulgt av varme og voldsomme regnskyll.

Her har jeg gitt en kort orientering om avløpsforholdene til de enkelte tider av året. Avvikelsene er så store at man slett ikke kan snakke om lover, men kanskje om regler. Vinterflommer, vårflommer og høstflommer har vært nevnt, men dette er ikke tilstrekkelig man må tilføye at flom kan komme på hvilken som helst tid av året.

Island har et utpreget økklima, man må allikevel være oppmerksom på at inne på fjellviddene i midten av landet gjør innlandsklimaet seg gjeldende, tydeligere enn de fleste av islendingene selv, som bor ved kysten, tror. Innlandsklimaet er særlig utpreget når et høytrykksområde er over landet. Det hvite snedekket som ligger i fjellet fra september til mai eller juni går en mektig utstråling mot klar himmel, medførende lav temperatur; forskjellen er da stor til det relativt varme kystområder. Det motsatte har man igjen om sommeren i juli og august, hyggelig varme ut på ettermiddagen over mørke lavamarker hvor sjøbrisnen ikke når til, der blir det også kjøligere netter.

Polarsirklen tangerer landet i nord og i forbindelse med diskusjonen om værforholdene skal man legge merke til at alle de øvrige nordiske land strekker seg lenger syd og også lenger mot nord, unntasjon Danmark. Grønland hører jo Danmark til, så det går sannsynligvis ikke forbi danske hydrologer å sysle med hydrologiske spørsmål i nordlige egner.

Til videre informasjon om værforholdene viser jeg til etterfølgende foredrag "Nedbør og temperatur" av meteorolog Adda Båra Sigfúsóttir,

2. De islanske elvtyper


Det har fra landnåmstiden (1100 år) vært vulkansk utbrudd gjennomsnittlig hvert 5-6 år. Ser vi nærmere på landets geologiske hovedtrekk er det første vi legger merke til, et bredt belte av vulkanske bergarter fra istid og postglacial tid den såkalte palagonittformasjonen. Den går tverrs over landet fra Melrakkaslóta i nordøst til Reykjanes (videre til Surtur) i sydvest. Dens sammensetning varierer og permeabiliteten er i høy grad

2,2 Linda elvene er de mest eiendommelige. Som før nevnt er de dannet av oppkommere og topografien er vanligvis slik at elva får hele sin vannføring på en kort strekning. På islándsk kalles oppkommene "lindir" eller "kaldavermsl" og man sier at de er kalde om sommeren og varme om vinteren, men det må skyldes relativiteten. Temperaturen i vannet er nemlig praktisk talt konstant hele året i gjennom, Vannføringa er også meget jevn; svinger dog dempet og med stor faseforskyvning i forhold til nedbøren. Spesielle flomfenomener omtales senere. Vamtemperaturen i de fleste oppkommere ligger i intervallet 2,0° til 5,5° C. Derfor går linda-elvene åpne et godt stykke innen de fryser til, selv i sterk kulde med tørr og hard vind. Linda-elver som blander seg med de andre elvetyper draga-elver eller jökul-elver er effektive til å hindre dannelse av stabilt isdekke. I streng kulde nærmer fronten av isdekket seg linda-elvens oppkommere, men i mildere vær tæres isen bort igjen ned langs elva. På denne måte jages isleggings og isløsnings området fram og tilbake langs elva hele vinteren i gjennom. De åpne vannflaten er alltid meget sarrproduserende i de første dager av hver kildeperiode. Dette forårsaker store sarransamlinger (på islándsk "hrömn"), som faller på de samme steder hvert år. Dette fenomen blir forresten mer utpreget da linda-elvens vannføring er konstant gjennom frostperioden mens de andre elvene går ned, særlig draga- elvene. Et karakteristisk trek på en linda-elv er at det langs elva gror helt ned til vannkanten. Ofte er det bare en smal stripe, med orken utenfor.

Innen vi går videre må vi ta vegetasjonsforholdene i betraktning, Kort sagt er Island et nakent land. Landet er nesten uten skog, der finnes

2,3 Draga-elvene. I motseiningen til de porøse lavafelter med stor permeabilitet er det forholdsvis vanntette tertiære basaltområder i øst og norvest, på sentrale deler av nordlandet og dets vestlige strøk. Disse trakten har utpregde U-daler fra istiden og V-formede daler, som elvene eroderer ned. Det ette og nakne grunnfjell medfører at elvene vokser fort i regnvær og blir nesten tørre i lange tørke- eller froстерperioder. Elvene dannes av små bekker fra dal-"dragene" og har derfor fått navnet draga-elver. Ingen av de tre islandske elvtyper ligner mer de skandinaviske enn draga-elven, det er jo rimelig da elvsystem i Skandinavia kales "vattendrag" og "vassdrag". Et karakteristisk trekk ved draga-elvene er at de gjerne skjærer seg dypt ned i de bratte fjellskråninger og legger opp gruskjøler når de kommer ned på flat mark. Kjeglene består av grovt material overst, finere nedentil. Elva vil her ustanselig skifte leie under flom.

I basalttrakten er mektigheten av avleiringen fra istid og postglacial tid sterkt vekslende. Avleiringen og sjøer virker regulerende på avrinningen. Dette kan gå så langt at ikke alle elver her kommer inn under betegnelsen draga-elv. I enkelte daler har også fjellskred fylt igjen dalbunnen, herav følger en så stor regulerende virkning at elva, som kommer fra foten av rasmassene, blir karakterisert som linda-elv.
SAMMENSTILLING AV DE TRE ISLANDSKE ELVTYPELS AVLØP I % AV GJENNOMSNITTLIG ÅRSAVLØP

Elvene vi viser har alle nogenlunde samme gjennomsnittlig årsavløp (i nærheten av 30 kl/s).

**DRAGA-ELVA**
Grimsá, Øst

**JÓKEL-ELVA**
Hverfisfljót, syd

**LINDA-ELVA**
Ytri - Rangá, syd
2,4 Jøkel-elv (breelv). Breene dekker som sagt en tiendedel av landets areal. Vatnajökull er den største på 8400 km². Dette betyr at breene må sette sitt tydelige stempel på islandske vassdrag. I virkeligheten er innflytelsen enda større enn disse tall angir da den spesifikke avrinningen breene er mye større enn gjennomsnittet for landet. De største vassdrag i landet har alle sin opprinnelse i breer.


Det er ganske alminnelig i de nedre deler på sandkjegler at grunnvannet kommer til synne og eroderer ned i sanden dype furer. Der oppstår en linda-elv (vanligvis liten), når så jøkel-elven skifter leie og kommer fram til linda-elvens leie flylde denne igjen.

Man har konstaterert ved borring (til 30 m dyp) at breene her i landet er tempererte selv de høyeste lag. I juni er det fremdeles minusgrader fra siste vinterens frostperiode like under overflaten, men ut på sommeren stiger temperaturen der også til 0°C. Smeltevann fra overflaten fryser da ikke længer til igjen, og må komme fram til elvene. Dette passer godt med jøkel-elvenes store vannføring i juli og august.

Nærmere om breenes innflytelse på hydrologien i meteorolog J. Eyþórsson fordrag.

Heie sommarea er det store døgnvariasjoner i jøkel-elvene som skyldes snesmeltningen. Vanlig maksimum for vannføringa ved brefoten er fra klokken 15-17, relativt til hvilken side breen heller og på dens størrelse. Den maksimale vannføring forplanter seg ned over elva; for et vassdrag som Thjósá (200 km) når den havet hele 30 timer etter. Skal man kryss en jøkel-elv på et vadested, enten på hest eller i bil, må man ta hensyn til døgnvariasjonene, så man kan benytte seg av minimum vannstand. Man bør være oppmerksom på at det ikke er tolv timer mellom maks. og min. Maksimum følger alltid tettere etter min., kanskje tida min- maks. er 9 timer, da er maks-min. 15.
Fig. 3
Jøkel-elva Kaldakvísl viser typiske døgnvariasjoner i vannstanden

Et spesielt flomfenomen er knyttet til jøkel-elvene, det såkalte "jökulhlúp".

Jökulhlúp kommer av to ting:
1) En dalbre går forbi munningen av en isfri sidedal og demmer opp avløpet fra denne. Når vanntrykket blir for stort dermed også oppdriften av isen, gir demningen seg og det oppdemte vann tømmes i løpet av kort tid.

2) Vulkansk varmeutstrømning fra breens underlag smelter isen og lager vannmagasiner under isdekket. Smeltevann fra overflaten må også samles i disse magasiner. For eller senere baner vannet seg vei under breen. Når vannet rinner fram kommer det til syne en ringformet senkning "ketilisig" i breen over lagrings plassen.

Dette gjøres på enkelte faste steder med nogenlunde bestemte mellomrom. Vulkanske utbrudd under isen kan imidlertid hende når som helst medførende et raskt jökulhlúp.

I begge tilfeller begynner flommen langsamt. Når jökulhlúp har nådd maksimum faller vannføringa brått, med andre ord hydrografen har en omvendt karakter av den vanlige ved flombølge fra dambrudd.

3. De varme kilder

Iceland er kjent for varme kilder og geysire og det er rimelig å tro at de tar en stor del av hydrologien. Det gjør de jo men ytterst lite av overflatehydrologien. Utstrømningen av rinnende vann fra de varme kilder utgjør bare ca. 0,3 o/oo av den totale avrinning. Største delen av varmen fra kildene går bort i form av damp.

De varme kilders virkning viser seg tydeligst i sterk kulde om vinteren, da kan de holde bekkjer og små elver isfrie. I større elver blir varmeeffekten
4. Grunnvannet

I et så tynt befolket og nedbørsrike land som Island har det alltid vært nok med drikkevann. Det fremgår av linda-elvens geologi at de porøse materialer i de postglaciale områder og i avleiringer fra istide innen basalt-traktene har en god filteringsevne. For en islending har det vært helt ukjent ikke å kunne svale sin tørst fra en hvilken som helst elv, også fra de slamførende jøkel-elver som er rene i biologisk henseende. I den senere tid har det skjedd en endring her. Vannforbruket øker og det begynner å knipe med vann, samtidig forurenses bekker og elver i tetbygde strøk.

Overfloden av vann har medført at vi ikke skjønner den rikdom som grunnvannet er. Ved siden av å utføre grunnvannsmålinger må det være hydrologens oppgave å få folk interessert i bevarelsen av grunnvannet, som ressurs. Som før sagt er studiet av grunnvannet knyttet til benyttelsen av jordvarmen og på andre steder er det utført primære målinger av grunnvannstanden. Jevnfor foredrag av geolog Jón Jónsson om grunnvannet nær Reykjavík d.v.s, i landets tetteste bebygde område.

5. Menneskelig virksomhet

I et åpent skogfattig land, som Island, har vinden stor makt ved jordoverflaten, den ødelegger lett grasteppet. Det er vanskelig å få noenlunde sikker rede på hvor stor skade vindersjøen til en hver tid har gjort, men fra landbruksstand blir det antydet at erosjonen satte inn for alvor for omtrent
200 år siden. Ved gransking av beretninger fra de siste århundre går det fram at oversvømnelser i de store elvene (d.v.s. i Hvítá, Árnésýsla) ikke var så hyppige som i de senere decennier. Det passer nemlig godt med at vegetasjonen og jordemomnet i nedbørsfeltene har blåst bort på store områder. Det er et åpent spørsmål om den økte vinderosjon skyldes menneskers inngripen, råhøgst av skog i gammel tid og senere for sterk beiting, eller om det er en klimadepresjon.

Allerede i 1906 vedtok Altinget en lov som tok sikte på å sette i gang tiltak for å hindre vinderosjonen. I årenes løp har de gitt gode resultater, men ennå har dog den frie natur overmakten. Ved økning av plantedekket oppnår man minst to ting av hydrologisk interesse, jevnerere vannföring og reduserer materialtransport i elvene. En annen inngripen har en nesten motsatt hydrologisk virkning, det er tørring av land. Mekaniseringen av landbruket har nemlig muliggjort gravning av ca. 12000 km lange og 2,3 m dype kanaler i de siste 20 år og gravingen fortsetter uavbrutt, resulterende i øket avrinning under flom og senkning av grunnvannstanden på områder på tilsammen noen hundrede km², dette foregår i de lavere strøk.


6. Data


Det spesifikke avløp angis i \( \text{l/s} \cdot \text{km}^2 \)

Vannföring angis i kl/s

Vannmengde angis i Gl
Fig. 4. De viktigste aukloasjonen i km²
Vassdrag over 1000 km² har størrelsemåler og nedbørfelt 1 km² innrammet på tegningen.
**INNSJÖER, areal over 10 km²**

<table>
<thead>
<tr>
<th>Innsjöens navn</th>
<th>Tilhører vassdraget</th>
<th>Höyde m.o.h.</th>
<th>Areal km²</th>
<th>Største dyp m</th>
<th>Volum Gl</th>
<th>Middeldyp m</th>
<th>Anmerkning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pingvallavatn</td>
<td>Sog</td>
<td>100,5</td>
<td>83,7</td>
<td>114</td>
<td>2855</td>
<td>34,1</td>
<td></td>
</tr>
<tr>
<td>2. Flórisvatn</td>
<td>Flórsá</td>
<td>571,0</td>
<td>70,0</td>
<td>109</td>
<td>2900</td>
<td>41,4</td>
<td></td>
</tr>
<tr>
<td>3. Lögurinn</td>
<td>Lagarfljót</td>
<td>20,2</td>
<td>53,0</td>
<td>112</td>
<td>2690</td>
<td>50,7</td>
<td></td>
</tr>
<tr>
<td>4. Mývatn</td>
<td>Laxá, S.-ving.</td>
<td>278,3</td>
<td>36,5</td>
<td>ca.4,5</td>
<td>ca.90</td>
<td>ca.2,5</td>
<td>ikke ekkoloddet</td>
</tr>
<tr>
<td>5. Hvítárvatn</td>
<td>Hvítá, Árness.</td>
<td>421</td>
<td>29,6</td>
<td>84</td>
<td>817</td>
<td>27,6</td>
<td></td>
</tr>
<tr>
<td>6. Hóp</td>
<td>Bjargaós</td>
<td>ca.1</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Langisjór</td>
<td>Skáftá</td>
<td>660</td>
<td>27</td>
<td>75</td>
<td></td>
<td></td>
<td>ikke målt</td>
</tr>
<tr>
<td>8. Grænaland</td>
<td>Súla</td>
<td>500-600</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>under bearbeidelse</td>
</tr>
<tr>
<td>9. Skorradalsvatn</td>
<td>Andakilsá</td>
<td>57</td>
<td>14,8</td>
<td>48</td>
<td>333</td>
<td>22,5</td>
<td>bredemt</td>
</tr>
<tr>
<td>10. Apavatn</td>
<td>Brúará</td>
<td>59</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>under bearbeidelse</td>
</tr>
<tr>
<td>11. Svínavatn</td>
<td>Efri-Laxá</td>
<td>123</td>
<td>11,8</td>
<td>39</td>
<td>147</td>
<td>12,5</td>
<td></td>
</tr>
<tr>
<td>12. Öskjuvatn</td>
<td>(Jökulsá á Fj.)</td>
<td>1050</td>
<td>10,7</td>
<td>220</td>
<td>1260</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>13. Höflavatn</td>
<td>-</td>
<td>ca.1</td>
<td>10,1</td>
<td>6,4</td>
<td>39</td>
<td>3,9</td>
<td></td>
</tr>
<tr>
<td>14. Kleifarvatn</td>
<td>-</td>
<td>140</td>
<td>10,0</td>
<td>97</td>
<td>290</td>
<td>29,0</td>
<td></td>
</tr>
</tbody>
</table>
### Vannføring - Spesifikke Avløp - Varihet

Vi har plukket ut en del elver fra de forskjellige landsdelene etter geografisk beliggenhet i håp om at listen vil orientere om avlopsholdene og klassifikasjonen av elveeier. MQ, HQ og LQ er henholdsvis gjennomsnittlig-, høyeste- og laveste vannføring. Må: den spesifikke avrinnings gjør en idé om nedbøren. Listen siste del som er utregnet i % av gjennomsnittlig vannføring viser varigheten.

<table>
<thead>
<tr>
<th>Vannmerke Nr.</th>
<th>Vassdrag Navn</th>
<th>Be-</th>
<th>Observasjons-</th>
<th>Nedbørfelt</th>
<th>Vannføring i kl/s</th>
<th>Spesifikke avløp</th>
<th>Avløpsvarigheten Q9 som % av MQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>Hverfisfljót, Dal</td>
<td>syd</td>
<td>8</td>
<td>J</td>
<td>330</td>
<td>38 250 2,5</td>
<td>115 757 8</td>
</tr>
<tr>
<td>27</td>
<td>Skógá, Skógafoss</td>
<td>&quot;</td>
<td>14</td>
<td>D+L</td>
<td>34</td>
<td>6,2 75 1,0</td>
<td>182 2200 29</td>
</tr>
<tr>
<td>30</td>
<td>Þjórsá, Þjórsá</td>
<td>&quot;</td>
<td>15</td>
<td>D+J+L+S</td>
<td>7200</td>
<td>394 3500 20*</td>
<td>55 490 3</td>
</tr>
<tr>
<td>99</td>
<td>fossa, Háifoss</td>
<td>&quot;</td>
<td>3</td>
<td>D</td>
<td>125</td>
<td>7,7 228 0,5**</td>
<td>62 1825 4</td>
</tr>
<tr>
<td>74</td>
<td>Kóríos, Vádested</td>
<td>&quot;</td>
<td>3</td>
<td>L+S</td>
<td>330</td>
<td>15,9 33 8,2</td>
<td>48 100 25</td>
</tr>
<tr>
<td>64</td>
<td>Hvítá (Ólósá), Selfoss</td>
<td>&quot;</td>
<td>11</td>
<td>L+J+S+D</td>
<td>5760</td>
<td>392 2200 162</td>
<td>68 382 28</td>
</tr>
<tr>
<td>7</td>
<td>Sog, Ljósífoss</td>
<td>&quot;</td>
<td>24</td>
<td>L+S</td>
<td>1050</td>
<td>111 175 73</td>
<td>106 167 70</td>
</tr>
<tr>
<td>43</td>
<td>Búardalá, Dynjandí</td>
<td>&quot;</td>
<td>12</td>
<td>L+S</td>
<td>670</td>
<td>66 253 41</td>
<td>99 378 61</td>
</tr>
<tr>
<td>87</td>
<td>Hvítá, Gullfoss</td>
<td>&quot;</td>
<td>11</td>
<td>D+L+J+S</td>
<td>2000</td>
<td>122 2000 29</td>
<td>61 1000 14</td>
</tr>
<tr>
<td>66</td>
<td>Hvítá, Børg, Kjáfoss</td>
<td>&quot;</td>
<td>10</td>
<td>L+J</td>
<td>1685</td>
<td>93 450 57</td>
<td>55 267 34</td>
</tr>
<tr>
<td>16</td>
<td>Straumfjarðará, Snæfellss</td>
<td>&quot;</td>
<td>16</td>
<td>D+S</td>
<td>31</td>
<td>2,4 31 0,3**</td>
<td>77 1000 10</td>
</tr>
<tr>
<td>19</td>
<td>Dynjandí, Arnarfirði</td>
<td>&quot;</td>
<td>7</td>
<td>D+S</td>
<td>36</td>
<td>3,9 34 0,5**</td>
<td>108 944 14</td>
</tr>
<tr>
<td>45</td>
<td>Vatnabla, Forsæsludal</td>
<td>nord</td>
<td>12</td>
<td>D+S</td>
<td>450</td>
<td>8,9 212 1,9</td>
<td>20 471 4</td>
</tr>
<tr>
<td>10</td>
<td>Storá, Reykjaví Í</td>
<td>&quot;</td>
<td>29</td>
<td>D+S+L</td>
<td>390</td>
<td>9,4 125 5,0</td>
<td>24 320 13</td>
</tr>
<tr>
<td>50</td>
<td>Skjalfandafljót, Goðafoss</td>
<td>&quot;</td>
<td>12</td>
<td>D+J+L</td>
<td>3420</td>
<td>83 640 23</td>
<td>23 180 6</td>
</tr>
<tr>
<td>32</td>
<td>Laxá, Brúar</td>
<td>&quot;</td>
<td>16</td>
<td>L+S</td>
<td>1550</td>
<td>43,5 164 31**</td>
<td>28 106 20</td>
</tr>
<tr>
<td>20</td>
<td>Jökulsá á Fjöllum, Deti</td>
<td>&quot;</td>
<td>22</td>
<td>J+L+D</td>
<td>7000</td>
<td>190 1550 15*</td>
<td>27 221 2</td>
</tr>
<tr>
<td>17</td>
<td>Lagarfljót, Lagarfljót</td>
<td>öst</td>
<td>12</td>
<td>D+S+J</td>
<td>2800</td>
<td>158 887 4*</td>
<td>55 317 1</td>
</tr>
<tr>
<td>106</td>
<td>Grímá, Ströndal</td>
<td>&quot;</td>
<td>16</td>
<td>D</td>
<td>500</td>
<td>27,8 350 1,1***</td>
<td>56 700 2</td>
</tr>
<tr>
<td>74</td>
<td>Laxá f. Nesjum</td>
<td>&quot;</td>
<td>8</td>
<td>D</td>
<td>50</td>
<td>4,8 36 0,4**</td>
<td>96 780 8</td>
</tr>
</tbody>
</table>

* Den lave vannføring må delvis skyldes isens tilstoppelse av elvelet
** Ved kraftig isdannelse blir elva helt tørreflagt
Kart over gjennomsnittlig avløp 1 l/s • km² (utarbeidet 1956)
Adda Bára Sigrúnardóttir:

**NEDBÖR OG TEMPERATUR I ISLAND**

kort orientering med hensyn til de hydrologiske forhold

Ved forsøk på å danne et noenlunde pålitelig bilde av nedbørforholdene i Island støter man på store vanskeligheter. Terrenget er i den grad uregelmessig, at selv et forholdsvis tett stasjonsnett neppe kunne gi nedbørkart av ønskelig nøyaktighet, og hertil kommer også, at helt inntil de siste årene har nedbørstasjoner vært meget fåttallige. Ved utgangen av 1963 fann det 104 stasjoner som målte nedbør, men så sent som i 1950 var antallet kun halvparten av dette.

Næsten alle stasjonene ligger i lavlandet mens det store inlandsplata er praktisk talt uten stasjoner. Bare på den nordøstlige del fins det bebyggelse, og her har man de to høyestliggende stasjonene på henholdsvis 385 m og 450 m høyde. Opplysninger om de klimatologiske forhold i de høyere liggende områder er slik ytterst sparsomme. Det hittil største bidraget til forskning av værforholdene i det islandsk höyland kommer fra en sveitsisk ekspedisjon som i polaråret 1932-1933 oppholdt seg på Snæfellsjökull i 825 m høyde. Ellers har man bare målinger for noen sommermånedener mellom Hofsjökull og Langjökull og ved vestkanten av Vatnajökull. Når det gjelder nedbør har man også en del småmålinger på selve isbreene å holde seg til og nedbørmålinger i totalisatorer som nu står på syv steder i den sydlige del av höylandet.

Tross disse sparsomme opplysninger har man tillatt seg å tegne kart over årsnedbøren i Island (Bilag II). Følge dette kart kan man i grove trekk inndele landet i følgende nedbørområder.

1) Den sydøstlige del med over 1600 mm i lavlandet og over 4000 mm på de mest utsatte steder i fjellet.

2) Den sydvestlige del med under 1200 mm før største parten av lavlandet og over 3000 mm på de mest utsatte steder i fjellet.

3) Fjordene på den nordvestlige halvøy og i Øst-Island, som har årsnedbør på 1000-1400 mm. (Med untagelse av Ísafjarðardjúp.)

4) Nordlandet og det østlige innland med 400-600 mm bortsett fra noen høyere fjellpartier nær nordsiden og i Nordost-Island, som har mere nedbør.

* For stedsnavn, se Bilag I
Innenfor alle disse områder fins det selvsagt store orografiske variasjoner i nedbøren. Man har i de siste årene foretatt en undersøkelse av nedbørforholdene i Reykjavik og omegn. Her fremkommer en meget rask økning av nedbør mot fjellene i øst og sydøst. Årsnedbøren på flyplassen ved Reykjavik er 805 mm, 12 km lenger mot sydøst er den vokset til det dobbelte, og i 24 km avstand på 230 m höyre ser den ut til å være noe over 2500 mm. På det sydvestlige lavland har man nu i 4 år operert med forholdsvis tett stasjonsnett. Bilag III viser nedbørfordelingen i dette relativt flate område 1961-1963. Går man her langs kysten finner man et minimumområde med under 1000 mm i den midtre del. Annet minimum finns i de øverste østlige bygder, mens maximum med 1500-1600 mm ligger langs fjellkjeden som begrenser, området mot vest.

Andre steder i landet har man ennå ikke hatt anledning til å utføre topografiske nedbørmålinger men det foretas forbedringer av stasjonsnettet fra år til år. Tre stasjoner er nyttig opprettet i det meget nedbørrike strøk syd for Vatnajökull, og det ser ut til at den midlere årsnedbør kommer her opp til ca. 3500 mm på en stasjon ved navn Kvískur, som således får den største årsnedbør av alle stasjoner i landet.

Innerst i dalene på Nordlandet og på det forholdsvis flate höyland har man på den annen side funnet den minste årsnedbør i landet 365 mm. Her må det imidlertid bemerkes, at måling av nedbør som faller i form av snø i sterk vind, er meget usikker og disse omstendigheter bevirker sikkert en del lavere nedbørssummer i forhold til den virkelige nedbør på Nordlandet enn på Sydlandet, på grunn av strengere vinter i den førstnevnte landsdel.

Normalt kan man vente, at en del av nedbøren faller som snø i tiden september - mai på fleste steder i landet. I dette tidsrom faller 75-80% årsnedbøren i de vestligste områder. På kyststasjonene i Nordøst-Island får disse måneder minst andel i årsnedbøren eller 60-70%, mens andre landsdeler ligger mellom disse grenser. Det er selvsagt meget vanskelig å holde rede på hvor meget av denne vinternedbør faller i form av snø, men det kan med sikkerhet påstås, at regnvær kan ventes å forekomme i hvilken som helst vintermåned, hvor som helst i landet. Det kan her nevnes, at den førstnevnte sveisjiske ekspedisjon observerte regn på ialt 8 dager i januar 1933. Denne måned karakteriseres riktignok i våre klimatologiske oversikter som mild, men påfølgende februar var derimot kold, men også her fins det en dag med regn på Snaefellsjökull.

Ser man på nedbørdager i januar måned faller de fleste av dem i gruppen "dager med snø", men vinterværet er i den grad ustadig at ofte faller en vesentlig del av nedbøren også på disse dager som regn eller sludd.
I Reykjavik måles nedbør tre ganger i døgnet, kl. 05, 08 og 17, og her har man ved hjelp av værobservasjoner hver tredje time utført sortering av nedbøren for månedene oktober - april i årene 1949-1960, etter som nedbøren mellom to terminer bestod utelukkende av regn, utelukkende av snø eller var blanding av begge nedbørformer. Tabell I viser inndelingen av nedbør i disse tre grupper.


<table>
<thead>
<tr>
<th></th>
<th>Regn %</th>
<th>Snø %</th>
<th>Blandet nedbør %</th>
<th>Midlere nedbør mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oktober</td>
<td>90</td>
<td>4</td>
<td>6</td>
<td>103</td>
</tr>
<tr>
<td>November</td>
<td>75</td>
<td>12</td>
<td>13</td>
<td>90</td>
</tr>
<tr>
<td>Desember</td>
<td>50</td>
<td>26</td>
<td>24</td>
<td>73</td>
</tr>
<tr>
<td>Januar</td>
<td>40</td>
<td>28</td>
<td>32</td>
<td>87</td>
</tr>
<tr>
<td>Februar</td>
<td>58</td>
<td>28</td>
<td>14</td>
<td>74</td>
</tr>
<tr>
<td>Mars</td>
<td>60</td>
<td>22</td>
<td>18</td>
<td>60</td>
</tr>
<tr>
<td>April</td>
<td>77</td>
<td>10</td>
<td>13</td>
<td>58</td>
</tr>
<tr>
<td>Oktober-April</td>
<td>65</td>
<td>18</td>
<td>17</td>
<td>545</td>
</tr>
</tbody>
</table>

Her ser man at selv i januar måned faller for det første 40% av nedbøren som regn, og hertil kommer at 32% faller i såpass ustablitt vær, at man innenfor maximalt 12 times intervall har både fått snøvær og regn.

Ser man på den anden side på antall nedbørdager i Reykjavik har man her i middel 19 nedbørdager i januar og herav 14 dager med snøfall. I det nordøstlige innland, hvor man har mest stabil vintertid, er midlere antall nedbørdager i januar 14-16, mens antall dager med snø bare er 1-2 mindre.


På de fleste stasjoner er mai og juni de tørreste måneder. På samtlige stasjoner i Nord-Island (fra Suðureyri til Raufarhöfn) faller minimum i mai måned, som her får 4% av årsnedbøren, mens denne måned får i gjennomsnitt 6% på andre stasjoner i landet.
Fig. 1

Hólar - Akureyri - Reykjavík 1931 - 1960

Figur 1

Midlere månedsnædbör
Overste og laveste quintiler i fordelingen
av månedsnædbor (søyler).

Hólar i Hornafirdi

Akureyri

Reykjavík
Variasjoner i månedsnedbøren: For tre stasjonen, Reykjavik, Akureyri og Hölar i Hornafirði, som godt representerer de tre hovednedbørområder i landet har man oppstilt quintilsfordeling av månedssummer for nedbør 1931-1960. På fig. 1 har man innført grensene for øverste og laveste quintiler samt middelnedbør for de enkelte måneder. Alle disse fordelingene viser stor positiv skjevhet i de nedbørrikere måneder. Det mest utpreget eksempel er Hölar i januar hvor de 6 tørreste måneder dekker et intervall på 65 mm mens de 6 nedbørrikeste strekker sig over 225 mm. De forholdsvis tørre vår- og sommernåned på Akureyri og Reykjavik viser meget jevnere fordeling. Påfallende liten er variasjonen i den tørre maimåned på Akureyri. Hele variasjonsbredden er her 45 mm og 60% av samtlige maimåneder hadde nedbør mellom 8 og 20 mm.

Diagrammene viser, at alle måneder i tiden januar til august kan ventes å bli meget tørre på alle tre stasjoner, med derimot ingen måned i denne 30 års periode i tiden september-desember gitt nedbør under 27 mm på Hölar, og her er øvre grense for fôste quintil i disse måneder 88-119 mm.

Tilsvarende tall for Reykjavik er henholdsvis 13 mm for absolutt tørreste måned og 36-54 mm for øvre grense av fôste quintil. På Akureyri har en septembermåned praktisk talt vært uten nedbør (0,3 mm) og de tørreste oktober og november måneder kommer ned til 1-3 mm, mens desember har minst fått 19 mm. Øvre grense for laveste quintil i disse 4 måneder er her 19-46 mm.

Når det gjelder største nedbørssummer pr. måned fremkommer meget stor forskjell på Reykjavik og Akureyri på den ene side og Hölar på den andre side. Største månedsnedbør i tredveårspериoden er 166 mm på Akureyri, 212 mm i Reykjavik og 520 mm på Hölar. På den sistnevnte stasjon fikk man 3 måneder med over 400 mm nedbør, 18 måneder med over 300 mm og 73 med over 200 mm. Reykjavik hadde en måned med nedbør over 200 mm men Akureyri ingen.

De to største månedssummer man kjenner til i Island er 677 mm og 615 mm, og ble målt på Kvísker i januar 1964 og oktober 1963. Den tredje største er på 611 mm, og ble oppnådd i Stóri-Botn i Hvalfjörði i november 1958. Den sveitsiske expeditionen på Snæfellsjökull målte 549 mm i august 1933 (samtidig ble det målt 101 mm nedbør nede ved kysten), og på Hveradalir ved hovedveien mellom Reykjavik og det sydvestlige lavland fikk man 595 mm i januar og 584 mm i september 1933.

Tabell II. Fordeling av 24-times nedbørmengder 1946-1955

<table>
<thead>
<tr>
<th>Antall døgn i % av samtlige døgn</th>
<th>De sydøstlige områder</th>
<th>Nordlandet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nedbør</td>
<td>50-60</td>
<td>35-50</td>
</tr>
<tr>
<td>≥ 0.1</td>
<td>40-50</td>
<td>20-30</td>
</tr>
<tr>
<td>≥1.0</td>
<td>20-30</td>
<td>6-10</td>
</tr>
<tr>
<td>≥5.0</td>
<td>10-20</td>
<td>2-5</td>
</tr>
<tr>
<td>≥10.0</td>
<td>3-12</td>
<td>1/2-1</td>
</tr>
</tbody>
</table>

For dager med nedbør ≥ 40,0 mm kommer man opp til 2% på stasjonene i Sydøst-Iceland mens alle andre har her forholdstall under 1%.

Den absolutt største nedbør pr. 24 timer man kjenner til ble målt i Vík, en stasjon syd for Mýrdalsjökull, i desember 1926 og var på 215,8 mm. Nærmest denne rekord kommer 184,6 mm på Stóri-Botn i Hvalfjörði i november 1958. I juli 1960 varte et usedvanlig intensivt regnvær i to døgn i et begrenset område syd for Vatnajökull. På Fagurhólsmyri måtte man da 118,1 mm den 4/7 og 121,5 mm neste morgen. Nedbørmengder på ≥100 mm pr. 24 timer er ellers sjeldne.


Tabell III. Største nedbør (mm) pr. 24 timer 1931-1960.

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mars</th>
<th>April</th>
<th>Mai</th>
<th>Juni</th>
<th>Juli</th>
<th>Aug</th>
<th>Sept</th>
<th>Okt</th>
<th>Nov</th>
<th>Des</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reykjavík</td>
<td>36</td>
<td>40</td>
<td>57</td>
<td>22</td>
<td>19</td>
<td>30</td>
<td>31</td>
<td>35</td>
<td>49</td>
<td>37</td>
<td>44</td>
<td>55</td>
</tr>
<tr>
<td>Suðureyri</td>
<td>60</td>
<td>53</td>
<td>59</td>
<td>59</td>
<td>36</td>
<td>36</td>
<td>52</td>
<td>71</td>
<td>64</td>
<td>75</td>
<td>54</td>
<td>65</td>
</tr>
<tr>
<td>Akureyri</td>
<td>17</td>
<td>21</td>
<td>27</td>
<td>16</td>
<td>24</td>
<td>19</td>
<td>27</td>
<td>52</td>
<td>92</td>
<td>30</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>Telgárhorn</td>
<td>78</td>
<td>110</td>
<td>48</td>
<td>46</td>
<td>52</td>
<td>67</td>
<td>68</td>
<td>68</td>
<td>72</td>
<td>84</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>Höllar</td>
<td>134</td>
<td>107</td>
<td>78</td>
<td>90</td>
<td>106</td>
<td>84</td>
<td>61</td>
<td>56</td>
<td>122</td>
<td>100</td>
<td>106</td>
<td>92</td>
</tr>
<tr>
<td>Vík</td>
<td>64</td>
<td>78</td>
<td>49</td>
<td>68</td>
<td>78</td>
<td>92</td>
<td>75</td>
<td>93</td>
<td>150</td>
<td>77</td>
<td>139</td>
<td>76</td>
</tr>
<tr>
<td>Hæli</td>
<td>36</td>
<td>67</td>
<td>68</td>
<td>38</td>
<td>32</td>
<td>32</td>
<td>59</td>
<td>42</td>
<td>44</td>
<td>54</td>
<td>55</td>
<td>46</td>
</tr>
</tbody>
</table>
På alle disse stasjonene har man fått de største nedbørmengder i tidsrummet september - mars, i denne sammenheng er det verdt å poengtere, at storflo påflo kan ventes å forekomme når som helst i vintertiden, og at de værste flomsituasjoner ikke har vært forbundet med den største nedbør.
Her har markens beskaffenhet og snøsmelting spilt den avgjørende rolle.

Den årlige variasjon av 24 timers nedbør gjenspeiles også i tabell IV.

**Tabell IV.** Hyppighet av døgn med nedbør \( \geq 1,0 \) mm og 
\( \geq 5,0 \) mm i \% av samtlig døgn 1946-1955.

<table>
<thead>
<tr>
<th>Nedbør ( \geq 5 ) mm</th>
<th>Jan.</th>
<th>Mars</th>
<th>Mai</th>
<th>juli</th>
<th>Sept.</th>
<th>Nov.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reykjavík</td>
<td>23,5</td>
<td>15,8</td>
<td>7,4</td>
<td>13,6</td>
<td>11,3</td>
<td>15,0</td>
</tr>
<tr>
<td>Suðureyri</td>
<td>23,9</td>
<td>20,6</td>
<td>6,1</td>
<td>11,3</td>
<td>22,3</td>
<td>21,3</td>
</tr>
<tr>
<td>Kjörvogur</td>
<td>7,7</td>
<td>7,1</td>
<td>5,2</td>
<td>11,6</td>
<td>21,0</td>
<td>12,3</td>
</tr>
<tr>
<td>Akureyri</td>
<td>9,7</td>
<td>11,6</td>
<td>1,9</td>
<td>7,1</td>
<td>12,7</td>
<td>7,7</td>
</tr>
<tr>
<td>Dalatangi</td>
<td>27,1</td>
<td>13,9</td>
<td>11,0</td>
<td>18,1</td>
<td>26,3</td>
<td>28,7</td>
</tr>
<tr>
<td>Hölar</td>
<td>40,3</td>
<td>21,0</td>
<td>10,3</td>
<td>18,4</td>
<td>23,0</td>
<td>28,7</td>
</tr>
<tr>
<td>Hæll</td>
<td>19,0</td>
<td>21,0</td>
<td>12,6</td>
<td>23,9</td>
<td>18,3</td>
<td>18,0</td>
</tr>
</tbody>
</table>

| Nedbør \( \geq 1 \) mm | | | | | | |
|------------------------| | | | | | |
| Reykjavík             | 56,8 | 39,4 | 29,7 | 39,0 | 37,3  | 38,7 |
| Suðureyri             | 53,2 | 48,1 | 23,5 | 29,4 | 40,7  | 49,3 |
| Kjörvogur             | 26,8 | 32,3 | 14,8 | 30,6 | 46,7  | 34,7 |
| Akureyri              | 34,2 | 26,5 | 13,9 | 21,9 | 33,0  | 33,0 |
| Dalatangi             | 48,7 | 36,8 | 28,4 | 33,6 | 45,0  | 55,8 |
| Hölar                 | 48,4 | 37,7 | 28,7 | 39,4 | 39,9  | 44,7 |
| Hæll                  | 44,7 | 40,3 | 27,7 | 45,5 | 38,3  | 37,3 |

Den årlige variasjon av hyppigheten av nedbør \( \geq 5 \) mm er her minst eller 11% for innlandsstasjonene Akureyri og Hæll, hvor man forholdsvis ofte får kraftige sommerbyger. På Hæll får man til og med den største hyppighet i juli mens de andre stasjonene har maximum i høst eller vintertiden, Hölar, som har utpreget maximum i januar, utmerker seg ved årlig amplitude på 30%, mens de resterende stasjonen, som alle er kyststasjonen, har 16-18% Fordelingen av dager med \( \geq 1 \) mm går stort sett i samme retning men her er variasjonen større for alle stasjonen umtatt Hölar som nu kommer i gruppe med Hæll og Akureyri med årsamplitude på 18-20%, mens de andre stasjoner ligger på 27-32%.
Ordinæren angir hvor ofte på år i glemmeren som i tørkeperioder har oppstått den på akseisen årene lengre.

Fig. 2

Tørkeperioder 1649 - 1963
Røykenhet: Årens
Høier

Tabell V. Antall tørkeperioder 1949 - 1963

<table>
<thead>
<tr>
<th>Lengde</th>
<th>Reykjavik</th>
<th>Akureyri</th>
<th>Hólar</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 10 dager</td>
<td>91</td>
<td>109</td>
<td>78</td>
</tr>
<tr>
<td>≥ 15</td>
<td>36</td>
<td>51</td>
<td>21</td>
</tr>
<tr>
<td>≥ 20</td>
<td>14</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>≥ 25</td>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>≥ 30</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>≥ 35</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell V viser summarisk resultat av oppettingen for året som helhet. Akureyri får her fleste perioder innenfor alle grupper opp til 30 dagers lengde, men den absolutt lengste periode på 36 dager inntraff i Reykjavik sommeren 1956.

Undersøkelse av de enkelte måneder viser at langvarige tørkeperioder er hyppigst om sommeren på alle stasjonene men ellers er variasjonen fra måned til måned temmelig uregelmessig. Man får imidlertid frem de karakteristiske trekk i den årlige variasjon ved å gruppere materialet i 3 grupper på 4 måneder. Fig. 2 viser hvordan tørkeperiodene fordeles etter lengde og årstid på disse 3 stasjoner.

Akureyri utmerker seg ved størst forskjell mellom sommer og vinter mens det ikke er særlig stor forskjell på de 4 første og 4 siste måneder i året. På Hólar forekommer langvarig tørke sjelden i tiden september - desember, mens variasjonen innenfor de første åtte måneder av året er liten. For Reykjavik ligger september - desember en del lavere enn januar - april når det gjelder de middels lange perioder på 6-14 dager, mens den årlige variasjon blir ytterst liten når man er kommet opp til 19 dages lengde.

Sammenligner man stasjonene på enkelte punkter ser man f.eks. at tørke på minst 15 dager har i middel forekommet 2 ganger hver sommer på Akureyri men 1 gang på de to andre stasjonene. Ser man på tiden september - desember har tørkeperiode av denne lengde lått forekommet 3 ganger på disse 15 år på Hólar men henholdsvis 9 og 8 ganger i Reykjavik og Akureyri.

De 4 første måneder av året viser meget jevnere resultat eller 13 tilfeller for Reykjavik og Akureyri og 9 tilfeller for Hólar.
Betrakter man den grense som gjennomsnittlig er blitt oppnådd hvert annet år så ligger den høyest for Akureyri om sommeren eller på 24 dager. Lavest faller den for Hólar om høsten og i den tidlige vintertid hvor man finner 12 dager, men her har Reykjavik 17-18 dager for alle gruppene.

Samtidig med denne undersøkelse gjorde man en oppfølging av dager med nedbør ≥1 mm. Denne oppfølging er her av mindre interesse men det kan nevnes at i alt forekom det henholdsvis 20 og 22 perioder med nedbør ≥1 mm hver dag i 10 dager eller mer, i Reykjavik og på Hólar. Med en unntakelse inntraff alle disse nedbørperioder i tiden september – mars, og til tross for årstiden kan man påstå, at her har det for det meste dreiet seg om regn og ikke om snøvær. På Akureyri forekom 10 dages regnvær bare en gang.

Den lengste regnværperiode, som inntraff i disse 15 år, var på 21 dager og fant sted i Reykjavik i november 1958.

Av stor interesse ville være å gjøre nærmere statistisk utredning for sannsynligheten av meget langvarig tørke men dette arbeidet er ennå ikke utført.

**Temperaturforhold**

Temperaturen og da særlig den forholdsvis høye og meget variable vintertemperatur er av stor betydning for de hydrologiske forhold i landet.

I den sydlige og sydvestlige del av landet er januar den koldeste måned i året med middeltemperatur fra ca. 10° på de sydligste kyststasjoner til -20° på høyeste inlandsstasjoner. I andre landsdeler ble februar den koldeste måned i normalperioden 1931-1960, men forskjellen på januar og februar er liten. Langs kysten varierer middeltemperaturen fra 0° til -10°, mens de høyeste stasjoner i Nordøst-Island kommer ned til temperaturer mellom -4 og -6 1/2. Som for nedbøren mangler man her målinger fra inlandsplatået men der kan man regne med middeltemperaturer mellom -6 og -8 på store områder.

På noen av de ytterste kyststasjoner i nord og øst blir august den varmeste måned med middeltemperaturer fra 8° til 9 1/2°, men ellers er juli varmest med 10°-12°.

Fig. 3 viser temperaturen etter måneder på noen stasjoner. Mørkjørulur i Nordøst-Island har den største årlige amplitude på 15,6° mens Dalatangi på østkysten viser minst årlig variasjon, kun 9,30°. Som illustrasjon av forskjellen mellom øst- og vestkyst har man innegnet temperaturen på Hellissandur, en kyststasjon nord for Snæfellsjökull på omtrent samme bredde
som Dalatangi. Vestmannaeyjar viser typiske oseaniske forhold, Reykjavik og Akureyri representerer de tette bebyggede strøk i henholdsvis Syd- og Nord-Island.

Variasjonen om normaltemperaturen er temmelig stor, særlig om vinteren. Man har ikke utført noen statistisk undersøkelse av denne variasjon men tabell VI viser ekstremene på to stasjoner for perioden 1931-1960.

Tabell VI. Ekstreme månedsmiddeltemperaturer 1931-1960

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reykjavik varm-est</td>
<td>3,6</td>
<td>5,2</td>
<td>3,9</td>
<td>5,6</td>
<td>8,9</td>
<td>10,9</td>
<td>12,5</td>
<td>12,1</td>
<td>11,5</td>
<td>7,7</td>
<td>6,3</td>
<td>4,4</td>
</tr>
<tr>
<td>Reykjavik kold-est</td>
<td>-3,8</td>
<td>-3,5</td>
<td>-3,0</td>
<td>-0,0</td>
<td>3,9</td>
<td>8,3</td>
<td>10,0</td>
<td>9,3</td>
<td>6,1</td>
<td>2,2</td>
<td>-0,1</td>
<td>-2,6</td>
</tr>
<tr>
<td>Akureyri varm-est</td>
<td>3,2</td>
<td>5,0</td>
<td>3,4</td>
<td>5,1</td>
<td>9,5</td>
<td>12,6</td>
<td>13,3</td>
<td>13,2</td>
<td>11,6</td>
<td>7,9</td>
<td>4,8</td>
<td>3,7</td>
</tr>
<tr>
<td>Akureyri kold-est</td>
<td>-6,0</td>
<td>-5,9</td>
<td>-5,6</td>
<td>-2,1</td>
<td>1,9</td>
<td>5,9</td>
<td>8,8</td>
<td>6,7</td>
<td>4,1</td>
<td>0,9</td>
<td>-2,0</td>
<td>-4,3</td>
</tr>
</tbody>
</table>
For Reykjavik blir forskjellen mellom varmeste og koldeste år i tiden juni til august 2,5° - 2,8°, men for månedene desember - mars er denne differens 6,9° - 8,7°. For Akureyri er svingningene større både sommer og vinter. Her har variasjonen vært minst i juli 4,5°, og størst i tiden januar - mars 9,0 - 10,9°.

Tøvær: Stadig vekselende tøvær og frost samt sterk vind karakteriserer den islanske vinter. For å skaffe seg et innblikk i disse forhold kan man studere dager med middeltemperatur ≥ 0,0° i tiden desember - mars i Reykjavik og Akureyri. Tar man for seg årene 1958-1963 viser det seg at 44% av alle døgn på Akureyri hadde positiv middeltemperatur i månedene desember - februar og i mars falt 55% i denne gruppe. Tilsvarende tall for Reykjavik er henholdsvis 58% og 70%.

Fig. 4

Diagrammene i Fig. 4 viser hvorledes disse dager fordeles på tøværperioder av varierende lengde i tiden desember - februar. På Akureyri dominerer de meget kortvarige tøværperioder. Her varer tøværet hyppigst bare 1 eller 2 dager, 55% av alle tøvær faller i denne gruppe, mens kun 5% tilhører tøværperioder av 10 dagers lengde eller mer. Tilsvarende tall for Reykjavik, som har mildere klima, er 36% og 20%. Denne 5 års periode er selvsagt for kort til å gi pekepunkt om de ekstremer man kan vente å få, men de lengste tøværperioder i dette tidsrom var på 20 dager i Reykjavik og 22 dager på Akureyri. I marsmåned er middeltemperaturen i Reykjavik blitt positiv (1,5°) og i 3 av 5 år har man hatt tøvær i mer enn 23 dager. På Akureyri hvor månedsmidlet nærmer seg 0° (-0,3) har halvparten av tøværperiodene lengde av 7 dager eller mer.

Et godt mål for tøværenes varme har man i antall graddager over 0°. Man har imidlertid ikke beregnet graddager i Reykjavik eller Akureyri, men en av meteorologene ved den islanske værtjeneste, Jónas Jakobsson, har beregnet midlere antall graddager i varierende høyde over Keflavik flyplass for 10 års perioden 1954-1963. Tabell VII gir hans resultater.
Tabell VII. Midlere antall graddager ifølge sonderinger over Keflavik flyplass 1954-1963.

<table>
<thead>
<tr>
<th>Höyde</th>
<th>Jan</th>
<th>Feb</th>
<th>Mars</th>
<th>April</th>
<th>Mai</th>
<th>Juni</th>
<th>Juli</th>
<th>Aug</th>
<th>Sept</th>
<th>Okt</th>
<th>Nov</th>
<th>Des</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ved bakken 49 m</td>
<td>49</td>
<td>58</td>
<td>53</td>
<td>93</td>
<td>132</td>
<td>200</td>
<td>271</td>
<td>334</td>
<td>319</td>
<td>247</td>
<td>174</td>
<td>105</td>
</tr>
<tr>
<td>500 &quot;</td>
<td>28</td>
<td>23</td>
<td>43</td>
<td>64</td>
<td>106</td>
<td>174</td>
<td>232</td>
<td>217</td>
<td>159</td>
<td>100</td>
<td>62</td>
<td>27</td>
</tr>
<tr>
<td>1000 &quot;</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>21</td>
<td>44</td>
<td>94</td>
<td>151</td>
<td>131</td>
<td>83</td>
<td>40</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>1500 &quot;</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>21</td>
<td>48</td>
<td>83</td>
<td>62</td>
<td>39</td>
<td>18</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>2000 &quot;</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>2</td>
<td>8</td>
<td>23</td>
<td>37</td>
<td>21</td>
<td>19</td>
<td>8</td>
<td>4</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Daglige temperaturswingninger: Undersøker man de midlere daglige swingninger i temperaturen får man frem at i desember og januar er den daglige amplitude ganske nær ved 0, men om sommeren kommer den opp til 2°, og fremkaller da regelmessig pulsering i breelvenes vamføring. Mangelen på regelmessig daglig variasjon i vintertiden betyr selvsagt ikke, at man ikke har store daglige variasjoner i denne årstid, men gir kun uttrykk for at disse variasjoner er forbundet ved adveksjoner av varme eller kolde luftmasser. Disse adveksjoner kan ofte være meget kraftige og forårsaker da store temperaturendringer på kort tid. De fleste virkelig store temperatursprang skjer om vinteren, men som et ekstremt tilfelle kan man nevne, at i Reykjavik var temperaturen 6,8° den 9 april 1963 kl. 11 men kl. 20 samme dag -6,4, og nattens minimum temperatur falt ned til -10,7. På to døgn fra kl. 8 den 9, til kl. 8 den 11, falt temperaturen 20,1°.
BILAG I
STEÐSNAVN SOM FØREKOMMER Í TEKSTEN
### BILAG IV

#### MIDLERE NEDBÖR I MM

1931-1960

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reykjavík</td>
<td>90</td>
<td>65</td>
<td>65</td>
<td>53</td>
<td>42</td>
<td>41</td>
<td>48</td>
<td>66</td>
<td>72</td>
<td>97</td>
<td>85</td>
<td>81</td>
<td>805</td>
</tr>
<tr>
<td>Elínshátótt</td>
<td>180</td>
<td>71</td>
<td>76</td>
<td>60</td>
<td>48</td>
<td>43</td>
<td>49</td>
<td>64</td>
<td>74</td>
<td>113</td>
<td>101</td>
<td>93</td>
<td>894</td>
</tr>
<tr>
<td>Slöðnúll</td>
<td>60</td>
<td>58</td>
<td>57</td>
<td>52</td>
<td>51</td>
<td>45</td>
<td>52</td>
<td>65</td>
<td>73</td>
<td>88</td>
<td>72</td>
<td>69</td>
<td>720</td>
</tr>
<tr>
<td>Arnarstapi</td>
<td>135</td>
<td>112</td>
<td>105</td>
<td>104</td>
<td>90</td>
<td>93</td>
<td>88</td>
<td>101</td>
<td>140</td>
<td>161</td>
<td>178</td>
<td>125</td>
<td>1412</td>
</tr>
<tr>
<td>Hellissandur</td>
<td>95</td>
<td>74</td>
<td>72</td>
<td>61</td>
<td>51</td>
<td>43</td>
<td>44</td>
<td>55</td>
<td>93</td>
<td>107</td>
<td>106</td>
<td>85</td>
<td>886</td>
</tr>
<tr>
<td>Stýrklíshólmar</td>
<td>83</td>
<td>73</td>
<td>66</td>
<td>47</td>
<td>37</td>
<td>38</td>
<td>36</td>
<td>50</td>
<td>76</td>
<td>87</td>
<td>89</td>
<td>77</td>
<td>758</td>
</tr>
<tr>
<td>Reykjadalur</td>
<td>68</td>
<td>59</td>
<td>55</td>
<td>43</td>
<td>35</td>
<td>36</td>
<td>38</td>
<td>50</td>
<td>71</td>
<td>78</td>
<td>72</td>
<td>65</td>
<td>670</td>
</tr>
<tr>
<td>Lambavatn</td>
<td>91</td>
<td>74</td>
<td>71</td>
<td>57</td>
<td>56</td>
<td>55</td>
<td>57</td>
<td>75</td>
<td>108</td>
<td>117</td>
<td>117</td>
<td>94</td>
<td>968</td>
</tr>
<tr>
<td>Kvílingadalsáur</td>
<td>132</td>
<td>107</td>
<td>113</td>
<td>86</td>
<td>71</td>
<td>63</td>
<td>61</td>
<td>91</td>
<td>159</td>
<td>168</td>
<td>156</td>
<td>137</td>
<td>1350</td>
</tr>
<tr>
<td>Suðureyri</td>
<td>107</td>
<td>102</td>
<td>83</td>
<td>64</td>
<td>40</td>
<td>43</td>
<td>44</td>
<td>73</td>
<td>124</td>
<td>251</td>
<td>128</td>
<td>123</td>
<td>1032</td>
</tr>
<tr>
<td>Hornafjörður</td>
<td>96</td>
<td>84</td>
<td>74</td>
<td>50</td>
<td>66</td>
<td>105</td>
<td>135</td>
<td>159</td>
<td>137</td>
<td>122</td>
<td>118</td>
<td>1241</td>
<td></td>
</tr>
<tr>
<td>Kjörvogur</td>
<td>56</td>
<td>49</td>
<td>56</td>
<td>43</td>
<td>45</td>
<td>63</td>
<td>63</td>
<td>99</td>
<td>99</td>
<td>73</td>
<td>68</td>
<td>774</td>
<td></td>
</tr>
<tr>
<td>Jökular</td>
<td>38</td>
<td>36</td>
<td>37</td>
<td>34</td>
<td>22</td>
<td>31</td>
<td>40</td>
<td>58</td>
<td>65</td>
<td>50</td>
<td>43</td>
<td>504</td>
<td></td>
</tr>
<tr>
<td>Þjóðøldu</td>
<td>34</td>
<td>35</td>
<td>35</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>31</td>
<td>42</td>
<td>48</td>
<td>57</td>
<td>60</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>Næt</td>
<td>35</td>
<td>34</td>
<td>35</td>
<td>33</td>
<td>21</td>
<td>33</td>
<td>39</td>
<td>45</td>
<td>52</td>
<td>53</td>
<td>36</td>
<td>28</td>
<td>451</td>
</tr>
<tr>
<td>Skriðuland</td>
<td>41</td>
<td>35</td>
<td>34</td>
<td>33</td>
<td>19</td>
<td>28</td>
<td>42</td>
<td>44</td>
<td>55</td>
<td>59</td>
<td>43</td>
<td>45</td>
<td>478</td>
</tr>
<tr>
<td>Siglunes</td>
<td>34</td>
<td>35</td>
<td>40</td>
<td>30</td>
<td>23</td>
<td>44</td>
<td>63</td>
<td>75</td>
<td>87</td>
<td>78</td>
<td>50</td>
<td>46</td>
<td>610</td>
</tr>
<tr>
<td>Akureyri</td>
<td>45</td>
<td>42</td>
<td>42</td>
<td>32</td>
<td>15</td>
<td>22</td>
<td>35</td>
<td>39</td>
<td>46</td>
<td>57</td>
<td>45</td>
<td>54</td>
<td>414</td>
</tr>
<tr>
<td>Sandar</td>
<td>37</td>
<td>26</td>
<td>24</td>
<td>25</td>
<td>19</td>
<td>33</td>
<td>41</td>
<td>55</td>
<td>70</td>
<td>71</td>
<td>46</td>
<td>40</td>
<td>477</td>
</tr>
<tr>
<td>Hafnarfjörður</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>27</td>
<td>20</td>
<td>37</td>
<td>48</td>
<td>62</td>
<td>65</td>
<td>84</td>
<td>50</td>
<td>49</td>
<td>531</td>
</tr>
<tr>
<td>Reykjavík</td>
<td>31</td>
<td>27</td>
<td>25</td>
<td>27</td>
<td>18</td>
<td>26</td>
<td>42</td>
<td>41</td>
<td>41</td>
<td>46</td>
<td>33</td>
<td>34</td>
<td>392</td>
</tr>
<tr>
<td>Grímsstaður</td>
<td>26</td>
<td>26</td>
<td>21</td>
<td>21</td>
<td>15</td>
<td>28</td>
<td>49</td>
<td>49</td>
<td>43</td>
<td>34</td>
<td>26</td>
<td>23</td>
<td>366</td>
</tr>
<tr>
<td>Raufarhöfn</td>
<td>43</td>
<td>37</td>
<td>35</td>
<td>36</td>
<td>22</td>
<td>39</td>
<td>62</td>
<td>73</td>
<td>76</td>
<td>80</td>
<td>50</td>
<td>53</td>
<td>618</td>
</tr>
<tr>
<td>Ísafjarðar</td>
<td>30</td>
<td>24</td>
<td>21</td>
<td>29</td>
<td>25</td>
<td>33</td>
<td>62</td>
<td>69</td>
<td>64</td>
<td>61</td>
<td>50</td>
<td>42</td>
<td>513</td>
</tr>
<tr>
<td>Fagrádalur</td>
<td>50</td>
<td>33</td>
<td>35</td>
<td>42</td>
<td>46</td>
<td>53</td>
<td>105</td>
<td>116</td>
<td>105</td>
<td>94</td>
<td>85</td>
<td>68</td>
<td>830</td>
</tr>
<tr>
<td>Hel</td>
<td>36</td>
<td>33</td>
<td>27</td>
<td>33</td>
<td>27</td>
<td>33</td>
<td>67</td>
<td>71</td>
<td>66</td>
<td>65</td>
<td>60</td>
<td>52</td>
<td>573</td>
</tr>
<tr>
<td>Höfn</td>
<td>91</td>
<td>56</td>
<td>38</td>
<td>35</td>
<td>22</td>
<td>29</td>
<td>53</td>
<td>49</td>
<td>39</td>
<td>66</td>
<td>78</td>
<td>88</td>
<td>664</td>
</tr>
<tr>
<td>Dalastaður</td>
<td>113</td>
<td>76</td>
<td>71</td>
<td>84</td>
<td>69</td>
<td>82</td>
<td>122</td>
<td>132</td>
<td>154</td>
<td>154</td>
<td>138</td>
<td>1346</td>
<td></td>
</tr>
<tr>
<td>Telgjardhóll</td>
<td>138</td>
<td>97</td>
<td>96</td>
<td>82</td>
<td>74</td>
<td>70</td>
<td>87</td>
<td>110</td>
<td>136</td>
<td>143</td>
<td>127</td>
<td>1293</td>
<td></td>
</tr>
<tr>
<td>Holar</td>
<td>191</td>
<td>115</td>
<td>132</td>
<td>108</td>
<td>90</td>
<td>83</td>
<td>93</td>
<td>116</td>
<td>162</td>
<td>170</td>
<td>187</td>
<td>185</td>
<td>1632</td>
</tr>
<tr>
<td>Fuglerhóls</td>
<td>166</td>
<td>122</td>
<td>132</td>
<td>110</td>
<td>116</td>
<td>110</td>
<td>105</td>
<td>137</td>
<td>182</td>
<td>187</td>
<td>176</td>
<td>188</td>
<td>1761</td>
</tr>
<tr>
<td>Kirkjufell</td>
<td>147</td>
<td>112</td>
<td>135</td>
<td>110</td>
<td>108</td>
<td>127</td>
<td>123</td>
<td>156</td>
<td>175</td>
<td>184</td>
<td>174</td>
<td>170</td>
<td>1725</td>
</tr>
<tr>
<td>Vík</td>
<td>182</td>
<td>159</td>
<td>164</td>
<td>171</td>
<td>145</td>
<td>167</td>
<td>169</td>
<td>188</td>
<td>237</td>
<td>238</td>
<td>212</td>
<td>229</td>
<td>2256</td>
</tr>
<tr>
<td>Vestmannaeyjar</td>
<td>138</td>
<td>104</td>
<td>100</td>
<td>97</td>
<td>81</td>
<td>81</td>
<td>84</td>
<td>108</td>
<td>132</td>
<td>146</td>
<td>141</td>
<td>156</td>
<td>1397</td>
</tr>
<tr>
<td>Snaefells</td>
<td>110</td>
<td>96</td>
<td>95</td>
<td>71</td>
<td>53</td>
<td>56</td>
<td>61</td>
<td>93</td>
<td>105</td>
<td>134</td>
<td>114</td>
<td>107</td>
<td>1161</td>
</tr>
<tr>
<td>Hei</td>
<td>92</td>
<td>84</td>
<td>82</td>
<td>74</td>
<td>59</td>
<td>65</td>
<td>76</td>
<td>92</td>
<td>113</td>
<td>131</td>
<td>103</td>
<td>95</td>
<td>1064</td>
</tr>
<tr>
<td>Eyjarbakki</td>
<td>138</td>
<td>106</td>
<td>100</td>
<td>98</td>
<td>72</td>
<td>72</td>
<td>79</td>
<td>108</td>
<td>127</td>
<td>160</td>
<td>137</td>
<td>139</td>
<td>1542</td>
</tr>
<tr>
<td>Ljosafoss</td>
<td>155</td>
<td>115</td>
<td>140</td>
<td>109</td>
<td>91</td>
<td>92</td>
<td>76</td>
<td>127</td>
<td>162</td>
<td>204</td>
<td>171</td>
<td>144</td>
<td>1606</td>
</tr>
<tr>
<td>Dingvellir</td>
<td>134</td>
<td>103</td>
<td>110</td>
<td>96</td>
<td>70</td>
<td>68</td>
<td>74</td>
<td>95</td>
<td>120</td>
<td>157</td>
<td>139</td>
<td>134</td>
<td>1292</td>
</tr>
<tr>
<td>Reykjanes</td>
<td>98</td>
<td>71</td>
<td>90</td>
<td>75</td>
<td>60</td>
<td>57</td>
<td>58</td>
<td>73</td>
<td>109</td>
<td>121</td>
<td>107</td>
<td>102</td>
<td>1006</td>
</tr>
<tr>
<td>Keflavíkurflugvöllur</td>
<td>101</td>
<td>72</td>
<td>85</td>
<td>64</td>
<td>55</td>
<td>56</td>
<td>54</td>
<td>78</td>
<td>117</td>
<td>124</td>
<td>119</td>
<td>123</td>
<td>1049</td>
</tr>
<tr>
<td>Viðjárstaður</td>
<td>125</td>
<td>83</td>
<td>94</td>
<td>68</td>
<td>55</td>
<td>48</td>
<td>51</td>
<td>78</td>
<td>89</td>
<td>125</td>
<td>118</td>
<td>109</td>
<td>1043</td>
</tr>
</tbody>
</table>
**Indledning**

Hensigten med dette foredrag er en summarisk redegørelse for forbindelsen mellem de forskellige flodtyper og de geologiske forhold på Island. Vi har allerede, i Sigurjon Rists foredrag, fået en oversigt over den her i landet anvendte klassifikation, inddelingen i tre hovedtyper: draga-, linda- og jökelfloder. Jeg skal ikke her komme nærmere ind på den sidstnævnte type, jökelfloderne, men vil hovedsageligt forsøge at gøre rede for de to første; dragafloder og lindafloder. Det er jo disse to typer der har deres udspring i grundvandet og vedligeholdes af dette. De er derfor i langt større grad end jökelfloderne præget af de geologiske forhold inden for deres afvandningsområder. Meget træffende er de i lange tider blevet betegnet med et fælles navn bergvansår ("bjergvandsfloder") til adskillelse fra jökulfloder (jökelfloder). - Jeg må måske måde om at berg på islandsk ikke betyder "bjerg" eller "fjeld", men "klippe" el., "bjergart").

I geologisk henseende kan Island prale af to verdensrekorder:
(1) Intet andet landområde på jordens overflade - så stort og så vel afgrænset, at det fortjener betegnelsen "et land" - er i så stor udstrækning opbygget af vulkansk materiale, (2) efter samme definition af "et land" er Island det yngste land på jorden.

Oppblæsningen af de ældste kaolde lag i Islands bjerggrund går kun tilbage til overgangen fra mesozoisk til kænozoisk tidsalder for en 60-70 mill. år siden. På dette tidspunkt lå næsten alt, hvad man kan kalde for "fæst klippe", færdiggjort i det øvrige Norden - lige med undtagelse af Færøerne, som i denne henseende slutter sig til de ældste dele af Island. Begrebet bjerggrund (isl. berggrunnur) har derfor en speciel betydning her i landet, idet den islandske bjerggrund ikke alene omfatter de prækvartære dannelser, men også næsten igeså vældige vulkanske klippemasser af kvartær alder.

På det ny geologiske kort af Island skelnes der mellem fire forskellige formationer inden for bjerggrunden. Disse skal i det følgende omtales hver for sig i ældersfølge.

**Basaltformationen el., plateaubasalterne (isl. blágrýtismyndunin)**

Denne ældste formation af Islands bjerggrund udgør to store dele af landet, det østlige og det vestlige basaltplateau (se medfølgende kort). Disse
plateauer er opbygget af horizontale eller svagt hældende basaltlag, som hver for sig i form af tyrkflydende lava har oversvømnet det forhenværende forholdsvis flade terræn. Tit huler lavalagene umiddelbart ovenpå hverandre, men nok så ofte er der indskudt såkaldte mellemlag, der oprindeligt er dannet ved askeregn fra vulkaner eller afsat af vand og vind og senere ved tryk og cementering hændet til bjergarter, henholdsvis tuft, konglomerat, sandsten og lersten. I de fleste fjeldsider er mellemlagenes samlede mægtighed ganske underordnet i forhold til basalternes.

I mellemlagene har man fundet planteforstønninger tilhørende en tidligtertiær flora.

Basaltformationens regelmæssige opbygning af lavabænke og mellemlag afbryses mange steder af intrusiver, d.v.s. bjergartsmasser, som i smeltet tilstand er trængt nedefra ind i formationen. Små intrusiver, særlig gange af basalt, er almindelige inden for de fleste dele af formationen. Sure (lyst farvede) bjergarter, som liparit, forekommer også spredt inden for begge basaltområderne såvel i form af gange som af noget større og mere uregelmæssigt formede intrusiver, og enkelte steder findes der endelig rigtige dybbjergarter, som gabbro og en slags granit.

Basaltlavaer er i almindelighed porøse og spalterede, særlig i det øverste lag, men også tit i et tyndere lag på undersiden. I unge lavaer (sådanne, som vi skal omtale senere) har grundvandet forholdsvis fri bane til at bevæge sig horizontalt i disse utætte lag. Men inden for det gamle tertære, basaltplateau er såvel lavaer som andre oprindeligt porøse bjergarter i den grad blevet imprægneret ved udfældning af mineraler (kiselsyre, kalkspat og zeoliter) at de er blevet forholdsvis vandtætte. Også de talrige basaltgange nedsætter formationens permeabilitet for vand, da de som lodrette vægge skærer de vandrette og til dels vandførende lag på tværs. Det forhold, at varme kilder har vist sig fortrinsvis at springe frem langs gange, tyder på, at gangene standser de dybtgående horizontale grundvandsstrømme og dirigerer dem op til overfladen.

som efter gietscherens afsmeltning udgør dybe, langstrakte søer. Sådanne dalsøer - gennemstrømmet af dalens hovedflod - forekommer i alle dele af den islandske basaltformation (Skorradalsvatn, Haukadalsvatn, Svínavatn, Lögurinn o.m.fl.). De er dog langt fra så almindelige som i Skandinavien og savnes inden for de fleste flodsystemer på Island. - På den anden side er det forholdsvis mange islandske floder og åer, der i længdesnit nærmer sig en kurve med regelmæssigt aftagende hældning fra vandskillet eller plateauranden ud til havet. I den henseende viser vandløbene inden for den islandske basaltformation - trods deres unge alder - en stærre modenhed en de skandinaviske elve. Grunden er sikkert den, at Skandinaviens grundfjeld yder stærkere modstand overfor erosion end de islandske basalter. - Det må understreges, at denne forholdsvis fremskredne udvikling af flodernes længdeprofil på Island er strengt begrænset til den tidligere basaltformation.

Bortset fra de ovennævnte træk afviger vandløbene inden for denne ældste bjerggrundsformation ikke væsentligt fra de floder og åer der har deres udspring i den næstældste formation, som nu skal omtales.

De ældre grå basalter (isl, ældre grágrýtismyndunin)

De ældre grå basalters formation ligger blottet over store områder mellem de to endnu ældre basaltplateauer i øst og i vest (se kortet). Og ligesom disse består denne formation også hovedsaglig af basaltlavaer og mellemlag. Men der er den forskel, at her har både basaltlagene og mellemlagene - særlig de sidste - i almindelighed større mægtighed, men mindre horisontal udstrækning, og vidner dermed om landskabets mere ujævne relief under aflejringer. Mange af basalterne er af en finkornet og lys farvet varietet, der på islandsk betegnes som "grágrýtí" (hvorimod de tætte, mørke basalter, der er mere fremtrædende i andre aldersgrupper af bjerggrunden, kaldes "blágrýtí"). Mellemlagene består for en stor del af konglomerater, der er blevet fortolket som hærdnede moræner og fluvio-glaciale aflejringer. Enkelte steder i mellemlagene har men fundet fossiler, både af landplanter og havdyr. I nogle lag er der arter, der kun trives i et mildt klima, men i andre findes sådanne, der kun kan leve i et betydeligt koldere klima end det nuværende på samme sted. De ældste led i denne formation er sikkert sentertæerre (anugelig pliocene), medens størstedelen er tidlig-kvartær. De tidligere nævnte forhold beviser, at den er opbygget såvel under glacielle som interglacielle perioder.

Både basaltiske og liparitiske intrusiver forekommer i de grå basalters formation, hvor de optræder på lignende måde og næsten lige så talrigt som i basaltformationen,
I sammenligning med det gamle basaltplateau er de grå basalter - på grund af deres unge alder - betydeligt mindre eroderede; fjordlandskaber savnes, og dalsystemer er kun svagt udviklede. Også flodernes længdeprofil er mere uregelmæssig og tit med høje vandfald på overgangen fra höjlandet til lavlandet.

Men med hensyn til permeabilitet synes der ikke at bestå nogen betydelig forskel imellem det (op til 60 mill. år) gamle basaltplateau og de grå basalter (hvis alder næppe overskrider et par mill. år). Disse to ældste led i Islands bjerggrund er ganske væsentlig mindre permeable end alle de yngre. Vi kan sammenfatte de landsdela, disse to formationer når over, under betegnelsen de tætte områder. De udgør omtrent de to tredjedele af landets areal (linieret, henholdsvis vandret og lodret, på kortet).


Et vandløb, der afvander et sådant område er en dragaflod (isl. dragá). Den har ofte ikke noget bestemt udspringssted, idet dens øverste tilløb snart er vandflytende, snart tørre. Et sådant tilløb hedder på islandsk drag, heraf navnet på denne flodtype.

Da Sigurjón Rist i sit foredrag allerede har gjort rede for dragaflodens karakteristiske træk skal jeg kun minde om de to vigtigste:

(1) Store svingninger i vandføringen, forårsaget af hurtig reaktion på regn og ø, tørke og frost.

(2) Ligeledes store svingninger i vandets temperatur, der tilnærmelsesvis følger lufttemperaturen, så længe denne ligger over frysepunktet.

Af disse to egenskaber afledes alle de andre. På grund af de store og hyppige flomme eroderer dragafloderne meget effektivt og transporterer store mængder fast materiale. I stærkt hældende terræn løber de næsten altid på bunden af kløfter, de selv har gravet, for det meste efter istidens afslutning. Men på flade strækninger breder de sig, som oftest forgrenede, over vidtstrakte grussletter, hvis materiale de også har aflejret i postglacial tid. Normalt fører de klart vand, som da langtfra dækker hele bunden af det egentlige

Møbergformationen (Palagonitformationen)


På grund af møbergformationens porøsitet siver næsten alt regn- og smeltvand ned i bjerggrunden i disse øgne. I stærk regn kan der samle sig små vandpåle i lavninger på klippeoverfladen, men de bliver i regelen opsuget af dennes fine, kapillære porer i løbet af nogle få timer. Der forekommer
dog tættere partier af bjerggrunden, men de plejer at være af så begrænset omfang, at formationen som helhed må betragtes som porös og permeabel, overfladevand, både rindende og stillstående, er en sjældenhed indenfor de mest udprægede móbergområder. Disse forhold bevirker, at móbergfjeldene yderligere kendeteegnes ved en svag udvikling af eller fuldstændig mangel på erosionsklofter.

De yngre grå basalter (isl. yngra grágrýtið)


De to sidstnævnte formationer, móbergfjeldene og de grå basaltlavaer er nært knyttet til hinanden, både med hensyn til udbredelse og alder. De danner de to yngste led i det, vi kaller landets bjerggrund. Begge stammer fra den senere del af den kvartære istid, d.v.s., er mindre end ca. en halv million år gamle. Af gode grunde (jfr. ovenfor) kan man antage, at móberg-formationen er dannet under glaciale forhold, nemlig i glacialtiderne, medens de grå lavastrømme må være flydt på isfri landoverflade, d.v.s. i interglacialtiderne.

De yngre grå basaltlavaer er porøse på en anden måde end móberget, idet deres porer ikke ligger så tæt, men til gengæld er grovere (ikke kapillære), og desuden er lavaerne mere opspaltet. Stort set viser disse to formationer en lignende og ganske betydelig permeabilitet for vand. Men før jeg kommer nærmere ind på vandløbene i disse egne, vil jeg lige præsentere endnu en formation, der i hydrologisk henseende kan grupperes sammen med de to foregående.
Postglaciale vulkaner og lavaer

Den vulkanisme, Island kan takke for sin tilblivelse og vedligeholdelse, er i tidens løb blevet indskrænket til stadigt snævrere områder. Ved istidens afslutning, for en 10 tusind år siden, er de aktive områder skrumpet sammen til de zoner, der på kortet betegnes som "móbergsformationen" og "de yngre grå basalter". Spredt over størstedelen af disse zoner ligger de over 200 postglaciale eller nutidens vulkaner. Af dem har omtrent 30 været aktive i historisk tid (d.v.s. efter år 900). Her har vulkanerne med enestående produktivitet fortsat opbygningen helt op til vore dage. I jævnførelse med andre landes vulkaner excellerer de islandske i produktion af lava, medens deres produktion af løsmateriale (tefra) er underordnet. Det samlede areal af postglaciale lavamarker på Island anslås til omkring 11000 km², og den samlede mængde af lavalagene er sikkert mange steder flere hundrede meter. De postglaciale udbrudsprodukter udgør således en ret betydelig tilføjelse af solide klippemasser til den egentlige (præglaciale, glacial og interglacial) bjerggrund. Da de postglaciale lavaer bevarer de oprindelige, ejendommelige stærkningssformen praktisk talt uberørt af forvitring og erosion på deres overflade, er de letkendelige fra bjerggrundens isskurede klippeflader. I almindeligt sprogbegreb benyttes ofte betegnelsen lava (isl. brenna) i betydning af postglacial lava (således for eks, i signaturforklaringerne på de topografiske kort).

De postglaciale lavaer er permeable for vand i endnu højere grad end både móberget og de isskurede grågrýtvastastråmme. Men da udredelsen af disse tre formationer stort set falder inden for de samme områder og efter som deres indbyrdes grænser er for indvikerne til at kunne angives i medfølgende kortes lille målestok, skal vi her nøjes med at behandle disse områders hydrologi under et.


Inden for de tørre områder er det vaakelig at bestemme den nøjagtige beliggenhed af vandskellene mellem de forskellige afvandingsområder, da den ikke fremgår af de topografiske forhold.
Hvor disse områder, som på Reykjaneshalvøen, ligger ud til kysten er dræningen udelukkende underjordisk, ikke en bæk løber ud i havet, men ved ebbetid vælter der store kilder med fersk vand frem nede ved strandkanten (i fjæren). Hvor på den anden side et "tört" område grænser op til et "vådt" el. "tæt" område, opstår der veldige kilder på de lavestliggende strækninger af grænsen. Det er på sådanne steder lindafloderne har deres udspring.

En Lindaflod afvander et "tört" område. Der har i modsætning til dragafloderne et skarpt afgrænset kildeområde hvor den dænnes af forholdsvis få, men store kilder (heraf navnet, lind = kilde). Disse kilder fører klart, koldt vand. Både vandføringen (der kan gå op til mere end 1 m³/sek, for en enkelt kilde) og vandtemperaturen er meget konstante. Disse forhold præger floden, som oftest i hele dens længde.

Selv i den stærkeste regn og snesmeltning over en Lindaflods afvandingsområde får floden som regel ingen tilstrømning af vand ad overfladen, men kun gennem grundvandet, og tilførslen udjævnes fuldstændigt ved dets langsommme bevægelse over ulige store afstande fra de forskellige kanter af afvandingsområdet. Derfor har vejrforandringer i almindelighed ingen mærkbar indflydelse på disse floders vandføring og heller ikke på vandtemperaturen i deres øverste løb. - Dog kan der i sjældnævnte forekomme flomme i en Lindaflod. Dette sker kun under heftige tøbrud om vinteren, når jordbunden (som oftest løssjord eller flyvesand), der dækker den permeable klippegrund, først er blevet fortættet af tele (jordfrost).


Vandtemperaturen i Lindafloderne varierer omkring 3-5°C fra det ene afvandingsområde til det andet, mest efter områdets højde over havet. Ned efter floden forandres temperaturen selvfølgeligt i retning mod luftens temperatur, altså stiger i varmt vejr og falder i frost. Men denne forandring foregår så langsomm i Lindafloderne, at selv en afstand på 20-30 km fra kilden adskiller de sig fra de andre flodtyper ved, at vandets temperatur ofte afviger væsentligt fra luftens. Om sommeren plejer de at være koldere og om vinteren warmere end de andre. Selv jøkelfloder, der ved deres udspring har en temperatur af 0°C, plejer i varme sommerdage i en afstand på 15-20 km fra jøkelranden at være varmere end en Lindaflod i samme afstand fra sin kilde. Dette skyldes sikkert forskellen imellem de respektive flodtiers lejer: Medens Lindafloden plejer at løbe i en dyb, smal renede, har
jøkelfloden tendens til at brede sig ud til siderne på en lignende måde som for beskrevet om dragafloderne - og endda i endnu höjere grad.

Som følge af lindaflodernes temperaturforhold karakteriseres de endvidere ved ringe isdannelse om vinteren, i deres øverste løb, en 10-20 km ned fra kilden, lægger de aldrig til. Og i større afstand fra deres udspring sker dette kun i perioder af særlig streng frost - og dog sjældent uden en yderligere afkøling af flodvandet ved snefygning. Den sjældne forekomst af eller den fuldstændige mangel på isrydninger spiller antagelig en rolle for lindaflodens karakteristiske udforming af sit leje.

Jeg har i det foregående søgt at gøre rede for et led i den almindeligt anvendte klassificering af vandløbene her i landet, nemlig de mest karakteristiske træk for bjergvandsflodernes to hovedtyper, dragafloder og lindafloder. Som det jo skulle fremgå af det, jeg allerede har sagt, kan dragafloderne ikke siges at være nogen islandsk specialitet. De er snarere den almindelige, normale flodtype for de respektive topografiske og klimatologiske forhold. Derimod er lindafloderne en geologisk betinget flodtype og lige så speciel som Islands geologi er speciel - takket være de to verdensrekorder jeg nævnte i min indledning til dette foredrag.
J. Eythorsson:

**BREER OG BREMÅLINGER**

Man regner med, at omkring 11 800 km² eller 11% av Island er dekket med breer. Det er ikke mulig å gi et nøyaktig tall, da breernes størrelse har forandret seg med raske skritt de siste årtier. Våre topografiske kart er utarbeidet etter målinger fra årene 1903-1938, og siden den tid er de fleste breer skrumpet inn, især etter 1925. Vi vet heller ikke, hvor mange breer det er her i landet. Det er en hel del små breer på Nordlandet, som ikke er innegnet på de topografiske kartene eller medregnet i det hele tatt.

De tre store breer, som dominerer de andre, er ordnet i en rekke fra det sydøstlige hjørne av landet i nordvestlig retning, den fjerde større er midt på sydkysten.

Lengst mot sydøst er Vatnajökull, som har sitt navn av de mange "vann", d.v.s. elver, som går ut fra den i alle retninger. Dens areal oppgis til 8 400 km², hoyde over havet er for det meste 1 200-1 600 m og volumet av isen omkring 3 500 km³.

---

Fig. 1. Oversiktskart. a) Vatnajökull, b) Langjökull, c) Hofsjökull, d) Mýrdalsjökull, e) Drangajökull. Pliene anger elver hvor jökulklauf har forekommet.
Midt i landet er Hofsjökull, omkring 1000 km² og höyden er 1200-1600 m. Den er meget lite undersøkt. Fra den får Bjórsá en stor del av vannføringen sin. Fra Hofsjökull får også Hvítá på Sydlandet, Blanda og Héraðsvötn på Nordlandet største parten av sitt vann.

Langjökull med Börisjökull måler omkring 1050 km² og höyden er for det meste 1200-1300 m. Fra den får Hvítá på Sydlandet det meste av sin vannføring, ved overflateelvene Fúlakvísl og Farið, men man må dessuten regne med at en stor del av Sogs vannføring stammer fra Langjökull og samles underjordisk i Þingvallavatn. Hvítá i Borgarfjorden får også sine største kildefloder fra Langjökull.

Mýrdalsjökull og Eyjafjallajökull har et samlet areal på 800 km². Fra dem strømmer flere korte elver, som nesten utelukkende fører brevann. Desuten har man Drangajökull på Nordvestlandet på 200 km², Snæfellsjökull på 22 km² i 1908 og 11 km² i 1958, Tindafjallajökull på 27 km², Birkjáskjökull 23 km², Torfajökull 21 km², Tunghafjallajökull 50 km² og endelig Brándarjökull på Østlandet 27 km².

Det meste av det indre av Island er i grunnen en slette på 500 à 700 m over havet dekket med sand, lava og gressgange, strødd med store og små sjøer og mange koller eller fell, som vi kaller det. Over denne höyslette reiser de øyestop nevnte bredekkede fjellmassiver seg med forholdsvis korte mellomrum.

Passet mellom Langjökull og Hofsjökull er godt og vel 25 km bredt og 700-800 m höyt. Det kalles "Kjöllur" eller Kjölen, og det er lett å tenke seg opprinnelsen av navnet. Fra Hofsjökull øst over til Tunghafjallajökull - Vatnajökull er det også 20-30 km.

De tre hovedbreer danner både vann- og værskille mellem de fire fjordinger, som Island gjerne deles i geografisk og fra gammel tid av også administrativt. De har således en gjennemgripende innflytelse på landets hydrologi, idet nedbøren på deres nordside kun er halvdelen eller bare fjeldedelen av Sydlandets nedbør.

På lignende måte deler Mýrdalsjökull Sydlandet i to nedbørområder. Nedbøren på landet vesten om jökelen er bare 2/3 deler av det man har på østsiden.

Nedbørsfordelingen gjenspeiles i firngrenens höyde over havet. På sydlandet er den gjennemsnittlig 1000-1100 m, på Vatnajökulls nordside 1300-1400 m og opp til 1650 m i det

---

**Fig. 2.** Nedbørsfordelingen i grove trekk.
nordøstlige innland, hvor den 1680 m høye Herðubreið praktisk talt er uten bredannelse nu for tiden.

Våre breer er hittil kun ufølstendig undersøkt. Vi har i grunnen for store breer, for få utdannete folk og for små kroner! Det er derfor vi ikke er kommet så langt som til å kunne fremlægge regnskaper over materialhusholdningen hos våre breer. Men dette blir mere forståelig, når man husker på, at breutegene eller ablasjonsområdene gjerne er av størrelsessordenen 100 km² og akkumulasjonsareal et noe større. Dertil kommer, at man ofte er i villrede med skillet mellom de enkelte breer og avrinningsområder. Dette må vi for fremtiden overkomme ved nøyaktige målinger av breenes tykkelse, således at den underliggende landform trer frem. Det er allikevel ikke sikkert at denne metode vil løse problemet i alle tilfelle.

Men til undersøkelse av slike storbreer må man ha snøbiler og forholdsvis mange dyktige folk. Det må også innrømmes, at detaljerte breundersøkelser hittil har vært av begrenset praktisk interesse her til lands. Forst med planene om forøket utnyttelse av vannkraften blir disse undersøkelser aktuelle og påkrevet.

Vi har derfor for det meste måttet nøye oss med de mest elementære målinger: nemlig forandringen av breutegenes lengde. En breunget eller ablasjonsområdet av en bre kalles på islandsk skridjökull. De folk, som har bodd tett opp til breutegene har sett dem med egne øyne skride eller krype langsamt fremover og funnet på navnet, som jeg for øvrig synes de andre nordiske språk gjerne kunne "låne" i stedet for mere fremmedartede betegnelser. En bre (isl. brei) betyr, så vidt jeg vet, det samme som jøkel og imbefatter både ablasjons og akkumulasjonsområdet.

Målinger av våre skridjökler ble dog først begynt omkring 1930. Som bilag følger en oversikt over resultatet av disse målinger i årene 1931-1960. Forandringene er gjennemgående av samme størrelsessorden som ved de norske breer, men i noen tilfelle betydelig større. Dette har delvis sin forklaring i, at enkelte breer har det med å rykke plutselig frem, hvorefter de synes å stå nesten stille i noen år, således at ablasjonen blir helt dominerende. I andre tilfelle, hvor breene rekker helt ned på lavlandet, kan det være terrasser eller gamle frontmorene under isen, som plutselig blir synlige på grunn av forøket ablasjon. Så blir den forreste del av breen til dois, som forsvinner helt i løpet av en sommer eller to. Det bemerkes at det ved de større breer gjerne er flere målesteder og at de oppgitte tall er middelverdier.

Et eksempel på en storslått og uventet fremrykning har man i Brúarjökull, som i oktober siste år plutselig skred 8-10 km fremover. Brúarjökull har et areal mellem 1000 og 1200 km² og hele dette området er kommet i
bevegelse. I stedet for det flate og frendelige utseende er hele området nu merket av et utall gapende spalter og selve brefronten er 30-50 m hoy, stupbratt og oppspaltet.


Dette nevnes som bevis på, at de islandske breer er gått frem ved 1700-tallet, omtrent samtidig med de norske breer. Sin fremskutt stilling har de så beholt i det store og hele til begynnelsen av dette århundrede.

Breiðamerkurjökull har overrett flere gårder, den siste i 1869, og da breen ble kartlagt i 1903 var dens mest fremskutte rand kun 500 m fra stranden. Siden - og hovedsakelig etter 1930 - er den gått sterkst tilbake og det har dannet seg dype laguner ved dens rand, hvilke man knappst hadde anelse om så sent som i 1936. Den største er over 100 m dyp og har sjøvann på bunnen.

Jeg tror at Breiðamerkurjökull i Sagatiden lå mellom 5-10 km lengere tilbake enn den gjør i dag. Ellers hadde det vært for knappe beiter for en storgård som Breiðá.

De fleste glaciologiske undersøkelser her i landet er for så vidt knyttet til Vatnajökull. I 1936-38 gjorde den Svensk-islandske ekspedisjon under professor Ahlmanns ledelse mange verdifulle målinger og studier m.h.t. akkumulasjon og ablasjon på den østlige halvdel av jøkelen; og våren 1951 utførte den Fransk-islandske ekspedisjon de første målinger av Vatnajökuls tykkelse samt vinterens akkumulasjon.

Fra og med 1953 har Den glaciologiske forening foretatt mange kortere og lengere ekspedisjoner til Vatnajökull, især Grúmsvøtenområdet, og målt akkumulasjøen på jøkelenes vestlige del.
Fig. 3. Sokkelen under Vatnajökull, Ekvidistanse 100 m.

Skønt disse målinger er alt for få og spredte, gir de allikøvel et fingerpek om materialbalansen, breens mektighet og landskapet under den.

Det viste seg, at breen for det meste er 600-1000 m tjkk, mens platået under den gjennemgående ligger på 800-1000 m over havet.

Dette vil si, at her, som i Norge forresten, er undergrunnen langt under den nuværende firngrense. Som bevis for, at Vatnajökull må ha vært smeltet bort, i hvert fall for det meste, etter istiden, har man den kjensgjerning, at i det brede dalføret, som Skeiðarárjökulen fyller nu for tiden, var det begrodd land med torvenoser og kratskog for 5000 år siden. Ved store flommer eller jökulhlaup i Skeiðará floter elven store stykker tørv samt endel bjerkestammer ut over forlandet. Ved karbonanalyse har man fastslått, at tørven er 5000 år gammel (4970 ± 100), hvilket altså vil si, at 3000 år før vår tidsregning var
TVERRNSITT OVER DEN SENTRALE VATNAJÖKULL
Vatnajökull i hvert fall ikke en sammenhengende smasse, skjønt de höyste toppen godt kunne være bredekkede. Men Vatnajökull i sin nuværende form må være under 5000 år gammel, og den må være bygget opp i en periode med betydelig koldere og/eller fuktigere klima enn det nuværende, da firngrensen ikke lå stort over 800 meter. Når dette skjedde, vet man ikke, men man tenker jo gjerne på ca 500 f. kr., på Fimbulvinteren, men kan foreløpig ikke fastslå noe.

Fig. 4 viser et tverrsnitt over den sentrale Vatnajökull, fra Breiðamerkurjökull til Brúarjökull, hvor den nuværende firngrense er fremhevet. Dette viser tydelig at Vatnajökull delvis er et "kunstig" fjell, bygget opp av is og sølv frost over firngrensen. Dette kunstige fjell har imidlertid en stor klimatologisk innflytelse og spiller en vesentlig rolle i landets hydrologi. Man må anta at lignende forhold finnes ved de øvrige storbreer. Deres tykkelse er ukjent med unntak av den sentrale del av Myrdalsjøkelen, som målte 500-600 meter.

Den svensk-islandske ekspedisjon målinger i 1936/38 viste stigende akkumulasjon på Vatnajökulls sydskråning opp til 1400 m men svakt avtagende over den höye. Ved 800-900 m nivået var vinterakkumulasjonen 160 cm vann mens den i intervallet 900-1500 m gjennomsnittlig var 245 cm eller 85 cm mere. Flatestørrelsen 900-1500 m er omkring 5000 km² ifølge det topografiske kart. således at det årlige overskuddet blir omkring 4 km³, hvis man tør regne med samme overskudd i hele området. Det bemerkes, at dette kun gjelder vintersneen, dertil kommer sommerhalvårets nedbør.

Den overskytende höyde av jøkelen forminsker i höyt grad nedbøren på dens nordside og "stjeler" således fra de nordlanske vassdrag. Det er påfallende at sletten nordenfor Vatnajökull for det meste er 700-800 m over havet eller nesten av samme höyde som platået under jøkelen, men i dette område faller så lite sne, at det ses ikke en skavd over sommeren. Muligens kan dette gi en idé om forholdene i det nordlige Island under lätiden og forklare, hvorfor det fantes isfrie områder der i le av den veldige breyggjen, som ble bygget opp på den sydlige del av höylandet.

Mens den Svensk-islandske ekspedisjon fant den største akkumulasjon i 1200-1300 m höye viste det seg i 1951 at den største akkumulasjon fantes på höyplatået i 1500 m höye og på Brúarjökulls nordskråning i 1300 m höye. Vinteren 1950/51 var også ualminnelig snærk i de nordøstlige distrikter, men samtidig viser dette, hvor viktig man må trekke generelle slutninger av alt for få målinger over et kort tidssrum.

De fleste målinger av vintersne på Vatnajökulls platået har gitt 600-700 cm tykkelse av snølaget med en vannverdi på mellem 300 og 430 cm. På Myrdalsjökull fant vi omkring den 20. juni 1955 920 cm snedybde med vannverdi på 580 cm, hvilket minner om Álfotbreen i Norge.
Den glaciologiske forening arbeider på å bygge opp en base for glaciologiske undersøkelser ved Vatnajökull's vestrand i 670 m hoyde, da erfaring har vist at dette sted er best egnet som oppstigningssted på jøkelen. Men vi har hittil ikke vært i stand til å holde lønnet arbeidskraft til regelmessige undersøkelser og har måttet nøye oss med kortere ekskursjoner af frivillige. Men dette er også en nødvendig begynnelse, da reiser på et så utstrakt jøkelerområde som Vatnajökull krever erfaring og betydelig reiseteknikk.

På grunn av de store snemasser og hårde værforhold på Vatnajökull nytter det ikke å stikke ned noen bambusstaker i håp om å finne dem til neste år. Det har vi oppgitt for lenge siden. Vi har også prøvet å sette opp hickorystaker med barduner, men uten resultat. Til slutt er vi gått over til konstruksjon av snestaker bestående av tre 2" jernrør stilt i rekant med 90 cm mellomrum og støttet med ringer av smijern på 125 cm mellomrum. Disse staker må så rake minst 8 m opp av sneen om hösten.


For å overkomme de vansker, som utstrekningen av våre jökler har i forhold til de midler vi råder over, er vi slått inn på den metode å nivellere...

På samme vis har vi målt lengdesnitt på Tungnaárjökull opptil 4 km fra jökulranden. Disse snitt viser at isens overflate har senket seg 33 m nær randen i løpet av de fire siste somre. I forbindelse med ablasjonsmålinger siste sommer har vi funnet at Tungnaárjökull er blitt redusert med ca. 200 x 10^6 m^3 årlig i denne periode, det svarer til 20% av Tungnaá-elvens vannføring i de tre sommermåneder juni-august.

Dette innlegg går jo dessverre mere ut på å konstatere, hva vi ikke vet enn på å gi positive opplysninger. Men problemene vil trenge på, og skjønt vårt arbeide mest har vært av forberedende art, så har vi høstet erfaringer og fått klarhet i hvorledes arbeidet skal gripes an og tilrettelegges.

Det første vi mangler er nøyaktige seismiske målinger av Tungnárjökulls tykkelse for å være i stand til å avgrense den. Andre deler av Vatnajökull og de øvrige storbreer bör også måles for å kartlegge undergrunnen.

Når vi har bestemt jökelens grenser og flatemål må vi gå systematisk i gang med å måle dens årlige husholdning og dermed dens andel i Tungná og bjórsá’s vannføring.

Ennvidere kjenner vi alt for lite til jökelens årlige bevegelser og hastighet.

Till slutt vil jeg uttale det ønske at vi ved slutten av den hydrologiske dekade måtte være i besittelse av større erfaringer og mere vite enn de vi i dag kan fremvise.
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
Sigurdur Thorarinsson:

JÖKULHLAUP OCH DERAS TAXERING
(Föredrag något förkortat)

Med den isländska termen jökulhlaup (översatt till svenska med jökellopp, ty, Gletscherlauf, eng. glacier burst) avses ett vattenflöde, som inträffar genom en mer eller mindre fullständig avtappning av en vattenreservoar som bildats under en glaciär eller längs dess kanter.

De vanligaste jökelloppen är de som uppstår genom tappning av isdämda sjöar. De har benämnts glacilimnogen (Thorarinsson 1938). Dylik jökellopp är kända från många glaciärområden utom de isländska. Jag nämner som exempel från Europas fastland jökelloppen från Demmevatn vid Rembesdalskåki, en av Hardangerjöelns utlöpare, och från Márjelensee vid Aletschgletsjären i Alperna. Den till arealen största isdämda sjö som finns i världen är troligen Lake George, som uppdämmes av Nigl glaciären i södra Alaska. Den når en areal av ca. 70 km². En maximum vattenföring på ca. 10 000 m³/sek, har uppmätts vid avtappning av denna sjö (Stone 1963a, s. 35).

På Island är isdämda sjöar ganska många. Den största av dessa, och den till volume troligen den näst största i världen är Grænalón, uppdämd av Skeiðarárjökull.

Denna sjö har en maximum areal på ca. 18 km², ett maximum djup på ca. 200 m och maximum volym på ca. 1,5 km³. Vid en total tömning av Grænalón når jökelloppens vattenföring ca. 6 000 m³/sek. (Askelsson 1936, Thorarinsson 1939). Andra kända issjöar på Island är Vatnsdalslón vid Heinabergsjökulls östrand och Hagavatn vid Langjökull sydrand som uppdämmes av glaciären Hagafellsjökull eystri (Wright 1935, Thorarinsson 1939). Den sistnämnda har ej isdämts sedan 1939.

Den andra typen av jökellopp är den som jag kallat den vulkanogen. Den åstadkommes genom avtappning av vatten som samlats under en glaciär på grund av värmettillförsel underifrån. Denna värmettillförsel kan ske genom subglaciala vulkanutbrott eller genom permanent tillförsel av värme från subglaciala hög- eller låg-temperaturområden (solfatare- och varma källområden). Island är de vulkanogen jökelloppens klassiska land, fast de förekommer på andra håll, t.ex. i Patagonien (Liloubyry 1956, s. 413 - 414). Men de isländska jökelloppen är de oförmögligt mest storslagna som förekommer. Det rör sig här om vattenföring som kan uppgå till flera tiotals tusen, ja t.o.m. över 100 tusen m³/sek.
De mest kända jökelloppen på Island är de som översvämmar Mýrdals-
sandur i samband med vulkanen Katlas utbrott (isl. Kötuluhlaup) samt de som
har sitt ursprung i Grímsvötn calderan i Vatnajökullas centrala del och
översvämma Islands största sandurområde, Skeiðarársandur. Dessa jökellopp
kallas Grímsvatnahlaup eller Skeiðarárhlaua.

Jag ämnar icke här att gå in på frågan om själva mekanismen vid dessa
reservoarers avtappning. Troligen spelar flera faktorer in. I många fall
tycks det helt enkelt vara fråga om lyftning av den dämmande isbarriären när
vattendjupet innanför blivit tillräckligt. I andra fall, särskilt när det är fråga
om stora vattendjup, synes avtappning kunna äga rum innan vattnet nått det
djup att lyftning kan äga rum. I dylika fall måste andra faktorar spela in s.s.
smältning, vilken man alltid måste räkna med när det är fråga om vulkanogena
jökellopp. Den kan också som Liestö påpekat (Liestö 1956, s. 124) äga rum
fast vattnet är nollgradigt, enligt potentiell energi kan övergå till värmeenergi
genom friktion. Det har också antagits av Glen (1954, s. 316 - 318) och andra
att vid ett visst vattendjup förekommer en plastisk deformering av isen, så
att vatten kan tränga inunder den. Enligt Glen kan detta ske när vattnet när
över 150 m djup, och han anser, att både Grænálon och Grímsvötn avtappas
på detta sätt. Emellertid visar Grænálonjökelloppens historia, att fast denna
sjö kan nå 200 m djup sker ingen avtappning när den uppstående glaciären
är tillräckligt mäktig men först sedan en betydlig avtunning av denna ägt ram
så att där tycks upplyftning av isbarriären vara den avgörande faktorn.
Däremot är det möjligt att Glens hypotes måste tillgripas för att förklara
Grímsvötn jökelloppen.

Direkta mätningar av ett stort jökellopp vattenföring och totala vatten-
mängdi erbjuder stora praktiska svårigheter. De stora jökelloppen på
Skeiðarársandur strömmar ut ur ett flertalet tunneln längs den 25 km breda
glacijarfronten (Fig. 1). Stor del av jökelloppen är därför oåtkomlig för direkta
mätningar. Mätning av flodfårornas sedan jökelloppet avslutats ger osäkra
mätningar enfl flodfårornas profil ständigt ändras under jökelloppens gång.
Enstaka gånger är dock flodfårorna så väl definierade att direkta mätningar
kan företagas och Mannings formulare tillämpas. Det största jökellopp som
kunnat mätas på detta sätt på Island, var Grímsvötn jökellopet 1954, med en
maximivattenföring på 10 500 m³/sek, som mättes av S. Rist (Fig. 2).
Den totala dämda vattenmängden uppgick till 3,5 km³. Men i många fall
erbjuder det harnär överstigliga svårigheter att taxera jökelloppens nere på
sandurslätterna och då måste andra metoder tillgripas.

Även om absoluta mätningar av de stora jökelloppen erbjuder stora
svårigheter er det relativt lätt att erhålla tämligen tillförlitliga upplysningar
om dessa jökellopps relativa förlopp. Sådana upplysningar föreligger faktiskt
om ganska många jökellopp, både Skeiðarárhlaup, Kótluhlaup och Grímsvatnahaup. Dessa upplysningar har vi mestadels tack vare vackna och intresserade bönder som noga nedtecknat tidpunkten för jökelloppens början, kulmination, begynnande avtagande samt slut. Det visar sig att i stort sett är gången densamma vare sig det gäller Grímsvatnahaup eller glacilimnogen jökellopp, s.s. Grænálonshlaup. De växer till en början långsamt, sedan allt snabbare så att vattenföringen är en exponentiell funktion av tiden, tills de når ett ephemeralt maximum, varefter de avtar synnerligen snabbt. Det diagram över Grænálon jökelloppen 1935 och 1939 som här visas (Fig 3 C), är uppgjort enligt beskrivningar av bonden Hannes på Nipsstaður, gården närmast väster om Skeiðarársandur. De absoluta siffrorna är baserade på taxering av den totala vattenvolymen i sjön Grænálon som avtappades fullständigt. Det inses lätt, att om man vet den totala vattenmängd som avtappas, så kan man med någorlunda säkerhet bestämma vattenföringen ty därigenom är ju den totala arealen innanför diagrammet given och jökelloppets gång som redan nämnts någorlunda fastställd. Det visar sig ju också att de diagram, som på detta sätt konstruerats stämde mycket väl överens med ett diagram över ett litet jökelopp från en av Hoffellsjökulls isdämda sjöar (Fig. 4) baserat på pegelmätningar av vattenföringen (Hjulström 1953, s, 171).

Det visar sig också att Grímsvötn jökelloppen har ett förlopp slående lika de glacilimnogen jökelloppens. Det framgår av diagrammen över jökellopen 1922, 1934, 1938 och 1945 (Fig 3 D och E), konstruerade på samma sätt som de för Grænálon jökellopen samt det diagram över jökelloppet 1954 som baserats på Rists direkta mätningar av vattenföringen.

Men hur har då den totala vattenmängden i Grímsvötn jökelloppen före 1954 taxerats? Till denna taxering, som måste betecknas så som approximativ har vi nått fram på följande sätt.

Vi vet att under de senaste århundraden och fram till 1934 inträffade Grímsvötn jökellopp slående regelbundet med 9-12 års mellanrum, i medeltal vart 10de år, t.ex. 1934, 1922, 1913, 1902, 1892, 1883, 1873. Vi vet genom fleråriga undersökningar av Grímsvötnområdet, att det vatten som dräneras i ett dylikt jökellopp är endast till liten del småtvatten som bildas i samband med själva utbrotten. Huvudsakligen är det småtvatten tillkommet genom kontinuerlig subglacial solfatara-aktivitet inom Grímsvötn området, samt ablationsvatten från det område som dräneras till Grímsvötn depressionen, ett område på 300 km². Jökelloppen regelbundna mellanrum förklaras enklast genom antagandet att avtappningen regleras av samma slags mekanism som reglerar de glacilimnogen jökelloppen och att vattentillförseln till Grímsvötn depressionen är någorlunda konstant, samt att det troligen är avtappning av vattnet i depressionen med en sänkning av vattenytan på 200 m och medföljande tryckavlastning som sätter i gång vulkanutbrotten och inte vice versa.
Om det ej rådde någorlunda ballans mellan tillförsel av is till Grimsvötn depressionen och smältning av den samma så skulle denna depression antingen fyllas eller fördjupas, men den har av allt att döma existerat i form liknande den nuvarande i många hundra år. Vi kan därför antaga, att den totala vattenföringen i ett normalt Grímsvatnahlaup motsvarar 10 årig nederbörd på det område av 300 km² som dränkas till Grímsvötn depressionen. Sedan 1953 har vi därför utfört årliga mätningar av ackumulationen inom detta område för att komma fram till ett någorlunda medelvärde för årsnederbörden som varierar mycket från år till år. Detta materiel har ännu inte bearbetats fullständigt, men värdet ligger mellan 2 000 och 2 500 mm/år. 2 500 mm års nederbörd inom detta 300 km² område motsvarar 7,5 km³ på 10 år Utgår man från den siffran kan man med ledning av det vi vet om Grímsvötn jökelloppens förlopp taxera maximivattenföringen till inomot 50 000 m³/sek. Troligen kommer den definitiva bearbetningen av vårt material att visa att dessa siffror är snarast i överkant och att omkr. 40 000 m³/sek, är en sannolikare maximisiffror för vattenföringen i ett Grímsvötn jökellopp.

Under våra årliga expeditioner höst och vår till Grímsvötn undersöker vi inte endast ackumulation och avsmältning utan även de årliga ändringarna inom Grímsvötn området där vi kunnat konstatera en regelbunden höjning av firn-isväxtet inom Grímsvötn depressionen mellan jökelloppen, vilket bevisar antagandet av en kontinuerlig vattendräft. Under de senaste decennierna har intervallen mellan jökelloppen varit mycket kortare än tidigare, i medeltal omkr. 5 år, med motsvarande minskning av deras totala vattenföring. Orsaken är med all sannolikhet huvudsakligen att söka i jökelnas avtunning, men ändringar i den subglaciala topografien kunna också ha ägt rum. Seismiska undersökningar av istäckets maktighet inom Grímsvötnområdet har visat sig vara förbundna med stora svårigheter, sannolikt på grund av de stora mängder aska som är inbäddade i isen. Men kort sydöst om Grímsvötn har Vatnajökull sin största maktighet, 1000 m.


Erfarenheterna från Grímsvötn får man akta sig för att generalisere när det gäller andra vulkanogena jökellopp. Sådana får det anses mycket sannolikt att de våldsammaste jökellopp som inträffar på Island, Kötluhlaup, är direkt förbundna med vulkanen Karlas utbrott och att smältningen äger rum.
under en mycket kort tidsperiod innen det synliga utbrottet börjar. Katlas utbrott brukar inträffa 2 gånger per sekels, det sista inträffade 1918, så att ett nytt är snart att vänta.

Katlas jökelopp är i samling fantastiska. Med all säkerhet uppgår maximivattenföringen till över 100 000 m³/sec, och troligen överträffar den Amazonas vattenföring, så att det blir världens största älv som följer fram över Myrdalssandur. Det har varit svårt att förklara hur så stora vattenmängder att de kan aståkomma ett dyligt jökelopp kan magasineras under Myrdalsjökulens istäcke, som har en mäktighet av ca. 500 m. Men ett litet jökelopp som inträffade där den 25. juni 1955 ger en nyckel till förklaring av detta. Detta jökelopp som härstammdes från Katla området mättes av S. Rist (Rist och Thorarinsson 1955). Fig. 5 visar ett diagram av detta jökelopp, jämfört med jökelopps från Grímsvötn och några andra (Thorarinsson 1957, Fig. 2). Den frapperande skillnaden är att jökeloppen från Katla området är så kortvarigt och att dess maximivattenföring är så mycket större än de andra jökeloppens i relation till den totala vattenföringen. Detta jökelopp maximivattenföring som nåddes inom en timme efter dess början, uppgick enligt Rists mätningar till omkr. 3 000 m³/sec, eller omkr. 50% av maximivattenföringen i ett Grænálonhlaup under det att dess totala vattenmängd var endast 28 gigalitrar eller 2% av den totala vattenföringen i ett Grænálonhlaup. Med ledning av diagrammet över detta jökelopp kan vi grovt uppskatta att en avtappning av 2 km³ vatten från Katla området, d.v.s. en tredje del av det som avtappas genom ett normalt Skeiðarárhlaup skulle resultera i en maximivattenföring på ca. 200 000 m³/sec. Så stor är maximivattenföringen knappast, varav den slutsatsen kan dragas, att den totala vattenmängden i ett Kötluňlaup troligen ligger mellan 1 och 2 km³.

Förklaringen till Katla jökelopps speciella typ är troligen den stora höjdskillnaden mellan vattenreservoaren jämfört med längden av den våg vattnet har att bana sig under isen, vilket framgår av följande tabell:

<table>
<thead>
<tr>
<th>Höjdskillnad mellan vattenreservoaren yta och utlopp vid jökelranden</th>
<th>Horisontalavstånd reservoar/utlopp</th>
<th>Höjdskillnad</th>
<th>Horisontalavstånd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katla</td>
<td>900 m</td>
<td>14 km</td>
<td>1:16</td>
</tr>
<tr>
<td>Grímsvötn</td>
<td>1330 -</td>
<td>50 -</td>
<td>1:38</td>
</tr>
<tr>
<td>Skafťárkvos</td>
<td>650 -</td>
<td>42 -</td>
<td>1:65</td>
</tr>
<tr>
<td>Grænálon</td>
<td>500 -</td>
<td>20 -</td>
<td>1:40</td>
</tr>
<tr>
<td>Gjánúpsvatn</td>
<td>80 -</td>
<td>3.8 -</td>
<td>1:47</td>
</tr>
</tbody>
</table>

Literaturnförteckning


Lliboutry, L. 1956: Nieves y glaciares de Chile. Ediciones da la Universidad de Chile. Santiago de Chile.


Fig. 1. Skeidarárjökull och utloppen för Grímsvötn jökelloppet i juni 1954 (Ur Rist 1955).

Fig. 2. Vattenföringen i Grímsvötn jökelloppet 1954 (Ur Rist 1955).
Fig. 3. A och B: Kartor över Grímsvötn 1938 och 1942.
C: Diagram över vattenföringen i Grænalón jökeloppen 1935 och 1939.
D: Grímsvötn jökeloppen 1934 och 1938.
E: Grímsvötn jökeloppen 1922 och 1945 (Ur Thorarinsson 1953).
Fig. 4. Pegelregistering av ett litet jökellopp från Gjänupsvatn 1951 (Ur Hjulström 1953).

Fig. 5. Vattenföringen i ett litet jökellopp från Katla området i juni 1955 jämförd med vattenföringen i några andra vulkanogen och glacilimnogen jökellopp. (Ur Thorarinsson 1957).
Guðmundur Pálsson
and
Gunnar Bodvarsson:

GEOTHERMAL ACTIVITY IN ICELAND

Introduction

The purpose of the present paper is to review the main results of geothermal exploratory work and indicate the role of thermal water in the general hydrological cycle in Iceland. Current view on the nature of thermal activity is given as well as a description of the main geophysical methods used in exploration of thermal fields.

Of the more important contributions to the study of thermal activity in Iceland the following should be mentioned: Thoroddsen (1925), Thorkelsson (1940), Einarsson (1942), Barth (1950) and Bodvarsson (1950, 1951, 1961, 1962).

Geological aspects

Iceland is located on the crossings of two oceanic structures, the Faeroes-Iceland-Greenland Rise and the Mid-Atlantic Ridge. It is composed largely of Tertiary flood basalts, that is more or less horizontal lava flows with thin intercalations of sediments, with younger volcanic rocks occurring along the belt of active volcanism, which crosses the country from southwest to northeast. According to recent seismic work on the structure of the pile of basalt lava (Tryggvason and Båth, 1961, Pálsson 1963), it consists of three seismic layers with P-wave velocities 2.8 km/sec, 4.2 km/sec and 5.1 km/sec overlying a substratum with P-velocity 6.3 km/sec. The three layers are interpreted as Quaternary volcanic rocks along the active belt, Tertiary flood basalts, and Tertiary flood basalts mixed with intrusions, respectively. The substratum is believed to consist of mafic material. The total thickness of the three lava formations is from 1,2 to 4.5 km. Fig. 1 shows a cross section through the plateau basalts in northern Iceland along line A-B shown on Fig. 2.

A conspicuous feature of Iceland is a large number of tectonic fissure systems generally running in a northeast-southwest direction, mainly along the belt of active volcanism. Basalt dykes cutting through the flood basalts are very common. Postglacial volcanism is largely confined to the active belt.

The geological structure of Iceland is thus very different from continental structure, and this is intimately related to the occurrence of thermal activity in Iceland.
Fig. 1. Schematic structure section through the basalt lava in northern Iceland (after Pálsson, 1963).

Fig. 2. Distribution of thermal areas in Iceland.
Geographical distribution of thermal areas

Bodvarsson (1961) has divided thermal activity in Iceland into two groups, the high-temperature activity and the low-temperature activity. This division is based on temperature conditions and the concept of base temperature discussed later.

The low-temperature activity is mainly confined to the lowlands of the western half of the country where about 600 major springs are scattered over about 250 thermal areas. The occurrence of springs is often found to follow a linear pattern. The total integrated flow of all hot-water springs is roughly 1500 l/sec. The total sensible (above 4°C) heat output of the springs amounts to some $10^8$ cal/sec, giving an average temperature of 75°C.

The high-temperature areas are all situated in the Neovolcanic zone. There are 13 such areas in Iceland, and they are characterized by a great number of steam holes, large areas of hot ground and a very high degree of thermal metamorphism. The total heat output of these areas has been very roughly estimated at $10^9$ cal/sec, i.e. ten times that of the low-temperature activity.

Fig. 2 shows the geographical distribution of the main thermal areas in Iceland. A magnitude scale has been adopted to roughly classify the areas with regard to heat output as follows:

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Total heat output</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5 - 25 · $10^6$ cal/sec</td>
</tr>
<tr>
<td>II</td>
<td>25 - 125</td>
</tr>
<tr>
<td>III</td>
<td>125 - 750</td>
</tr>
</tbody>
</table>

Data on individual thermal areas are given in Tables I and II.
<table>
<thead>
<tr>
<th>Total natural flow liters/sec.</th>
<th>Max. surface temp. C.</th>
<th>Heat output magnitude</th>
<th>Remarks on drilling base temperature, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 52</td>
<td>100</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>(b) 140</td>
<td>100</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>(c) 60</td>
<td>100</td>
<td>I</td>
<td>Includes the Great Geysir, borderline case.</td>
</tr>
<tr>
<td>(d) 70</td>
<td>100</td>
<td>I</td>
<td>Borderline case.</td>
</tr>
<tr>
<td>(e) 120</td>
<td>83</td>
<td>I</td>
<td>Base temp. at Reykir 98°C, 70 boreholes at Reykir, max. depth 1,380 meters. Output of boreholes 320 liters/sec, at 87°C.</td>
</tr>
<tr>
<td>(f) 10</td>
<td>88</td>
<td>I</td>
<td>Base temp. in Reykjavik 146°C, max. depth 2,200 meters. Output of boreholes 310 liters/sec at a max. temp. 138°C.</td>
</tr>
<tr>
<td>(g) 400</td>
<td>100</td>
<td>II</td>
<td>System of lines, Includes largest hot water spring at Deildartungas.</td>
</tr>
<tr>
<td>(h) 70</td>
<td>89</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>(i) 145</td>
<td>100</td>
<td>I</td>
<td>Borderline case.</td>
</tr>
</tbody>
</table>
**TABLE II**

High-temperature thermal areas in Iceland

<table>
<thead>
<tr>
<th>Name</th>
<th>Elevation (m)</th>
<th>Area (km²)</th>
<th>Heat output magnitude</th>
<th>Remarks on drilling base temperature etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reykjanes</td>
<td>15</td>
<td>1</td>
<td>I</td>
<td>One borehole 162 m deep</td>
</tr>
<tr>
<td>2. Trölladyngja</td>
<td>120</td>
<td>5</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>3. Krýsuvík</td>
<td>150</td>
<td>10</td>
<td>I</td>
<td>15 boreholes, max. depth 1,200 m, Base temp. approx. 230° C.</td>
</tr>
<tr>
<td>4. Hengill</td>
<td>30-600</td>
<td>50</td>
<td>II</td>
<td>Base temp. approx. 230° C. Numerous shallow boreholes, 8 deep boreholes max. depth 1,200 m.</td>
</tr>
<tr>
<td>5. Kerlingafjöll</td>
<td>900</td>
<td>5</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>6. Torfajökull</td>
<td>900</td>
<td>100</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>7. Vónarskard</td>
<td>1,000</td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>8. Grímsvötn</td>
<td>1,000</td>
<td>12</td>
<td>III</td>
<td>Under the Vatnajökull ice sheet.</td>
</tr>
<tr>
<td>9. Kverkfjöll</td>
<td>1,500</td>
<td>10</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>10. Askja</td>
<td>1,050</td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>11. Námafjall</td>
<td>350</td>
<td>2.5</td>
<td>II</td>
<td>Several boreholes, max. depth 430 m, Base temp. approx. 220° C.</td>
</tr>
<tr>
<td>12. Krafla</td>
<td>450</td>
<td>0.5</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>13. Theistareykir</td>
<td>330</td>
<td>2.5</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>
Nature of the hydrothermal systems

As mentioned above the structure of the plateau basalts in Iceland is rather favorable to deep circulation of water. Although not much is known in detail about this circulation, certain conclusions can be drawn from available data. A few of the main points will be discussed in the following.

Opinions have differed on the question of the origin of the thermal water. It was earlier considered (Barth, Sonder), that the thermal water derived its heat content from magmatic water and gases ascending from below. This view was never accepted by Icelandic geologists and has now been discarded. The energy balance of the large thermal areas cannot be explained on the basis of the magmatic theories.

A more likely explanation is that the thermal water is mainly surface meteoric water, which circulates through the deeper strata of the flood basalts and derives its heat content from contact with the rock. Chemical and isotopic composition of the water is indicative of meteoric origin. The thermal gradient has been measured in a number of boreholes in Iceland and the results indicate a gradient between 30 and 150°C/km. The thickness of the flood basalts is from about 1.2 to 4.5 km, and sufficiently high temperatures are therefore found in the lower parts of the flood basalts to account for the thermal activity. Energetic considerations also show that the heat content of relatively small volumes of rock can very well sustain the low-temperature thermal activity.

The high-temperature activity is probably connected with magmatic intrusions, which heat up circulating ground water at depth. This activity is confined to the zone of recent volcanism, and it is therefore likely that magmatic intrusions which do not reach the earth's surface are a major source of heat for these areas.

As mentioned earlier the structure of the flood basalt formations is favorable to water circulation. Although individual lava flows are relatively impermeable, the contacts between these may be permeable, and hot springs are sometimes associated with such contacts at the surface. More or less vertical dykes also form permeable channels along which hot-water may ascend to the surface. Thermal activity in the Tertiary basalt districts is frequently found to be related to basalt dykes.

The hydrothermal circulation systems thus are composed of presumably widespread aquifers in the lower part of the flood basalt formations and associated recharge and outlet areas. These deeper aquifers are largely isolated from the surface ground water except for the recharge areas. A good example of this isolation is the Reykjavik thermal area, which is located close to the sea shore. Boreholes have been drilled to 2,200 meters
depth with water production at various depths. No signs have been found of sea water in these holes. This isolation of the lower circulation channels is explained by the chemical action of the water. The hot water at depth dissolves minerals from the rock and on approaching the surface and cooling, precipitates are formed in the channels, mainly silica and calcite. Opening of new channels may be the result of tectonic processes. There is considerable seismicity in Iceland and changes in surface thermal activity are often observed to accompany earthquakes. It is also possible that the isostatic upwarping of Iceland at the end of the Pleistocene may have been an important factor in opening up water channels in the flood basalts.

The recharge areas to the hydrothermal systems are less well known than the outlet areas, which constitute the surface thermal areas. The recharge areas are believed to be closely related to the large tectonic fault systems which are very common in the Neovolcanic zone. In one recently drilled exploratory borehole at Kaldársel about 10 km south of Reykjavik, a fairly constant temperature of 2-50 °C was observed down to a depth of 750 meters. This is close to the average temperature of ground water below the seasonal temperature variations near the surface. This phenomenon has not been observed in other boreholes in Iceland of comparable depth. The borehole is situated in a major tectonic fault system, and the nearly constant temperature found may be due to an unusual permeability of the volcanic formations down to a depth of 750 meters.

The driving force of the circulation systems is the thermo-artesian pressure difference generated between the intake and outlet channels. The density difference of water at 5°C and 100°C for instance is 0.04 g/cm³. The hydrostatic pressure difference at the bottom of 1000 meters long columns of 5°C and 100°C water would thus be 40 metres of water. Boreholes producing hot-water or steam can always be quenched by pumping cold water into them. As the cold water is warmed up again by the surrounding rocks, the holes gradually reach full discharge capacity again.

The effect of boreholes in thermal areas is to decrease the resistance to flow of water offered by the outlet near-surface channels. The boreholes which cut water aquifers provide a low resistance channels to the surface and such holes may have a heat output which exceeds the natural heat flow of the thermal area, both by conduction and as sensible heat (above 4°C) of water and steam. Natural thermal activity in the vicinity of such boreholes is often found to diminish.

The temperature of the deeper parts of the hydrothermal circulation systems is defined as the base temperature of the system. For the flood
basalt formation with a thickness usually about 2-3 km it will probably in most cases be reached at a depth of the order of 1,000 meters. The above mentioned division of thermal areas into high-temperature and low-temperature areas is conveniently based on the base temperature concept. The upper limit for the low-temperature areas is somewhat arbitrarily put at 150°C, while the high-temperature areas have higher base temperatures. The highest base temperature measured so far is 232°C in the Hengill thermal area, which is about 50 km east of Reykjavik.

The base temperature of a hydrothermal system can often be inferred from the amount of chemical components dissolved in the water, as it emerges at the surface in a thermal area. Of particular importance appears to be the SiO\textsubscript{2} content of the water. Silica from the basaltic rock is dissolved in the water, and the solubility increases with increasing temperature. Precipitation of SiO\textsubscript{2} on cooling is a very slow process in weak oversaturated solutions and the content of silica in the water is therefore indicative of the temperature at the base of the hydrothermal system. The available data on base temperatures, T\textsubscript{b}, and SiO\textsubscript{2} content indicate the following relationship

\[ \text{SiO}_2 \text{ (ppm)} = 25 + T_b \]

where T\textsubscript{b} is in °C. This relationship is of importance in preliminary evaluation of thermal areas.

A programme for the study of isotopic composition of natural hot-water as well as surface ground water is being carried out by the Physical Laboratory of the University of Iceland. This involves study of the deuterium and tritium content of the water. There are regional variations in the deuterium content of surface ground water and by comparison the deuterium content of thermal water may indicate possible sources of the hot-water. The tritium content of natural thermal water may disclose the "age" of the water, i.e. the circulation time along the subsurface hydrothermal system, in recent years the tritium content of rain water has increased considerably due to the H-bomb tests which have been carried out every now and then since 1954. This is evident in surface ground water. No increase in tritium content of thermal water has been detected so far, which indicates an "age" of the water of more than 10 years.
Exploration methods

As thermal areas are of frequent occurrence in Iceland, exploration has been largely confined to areas, where natural thermal activity occurs at the surface. The exploration methods in current use involve a) geological surveys to detect structural features (faults, dykes etc.) which can be related to the surface thermal activity, b) geophysical and geochemical investigations as an aid to and continuation of the geological survey, and c) exploratory drilling with accompanying geological, geophysical and geochemical investigations in the boreholes.

In the following the geophysical methods will be described somewhat further and examples given of their use.

The geophysical methods can be divided into two groups, the direct and the indirect methods. The direct methods furnish data on the subsurface temperature, while the indirect methods are used to investigate structural features of the rocks in a thermal area, such as faults, dykes and other types of intrusions, which may have a relation to the thermal activity.

Direct methods

Two direct methods are in common use, a) the thermal methods which involve temperature measurements in boreholes and heat flow studies at the surface, and b) the electrical resistivity method.

a) The subsurface temperature field constitutes the most important set of physical data to be assessed in an exploration of a thermal area. Measurement of temperatures in boreholes for the purpose of inferring formation temperature is therefore carried out in most available boreholes, both in thermal and non-thermal areas.

Many disturbing factors can affect the normal subsurface temperature field. In Iceland the most important factor is flow of water in the flood basalt formations, and possibly gases and magma in the zone of active volcanism.

Most boreholes which have been drilled lately in thermal areas have a depth of 500-1,500 meters. The deepest hole is in Reykjavik and is 2,200 meters deep. In addition to these a number of shallow holes, 50-100 meters, have been drilled both in thermal and non-thermal areas to measure the surface temperature gradient.

An important consideration in thermal studies in boreholes is the disturbance of the rock temperature due to the drilling fluid circulation and water flow after drilling has come to an end. For the effect of the drilling fluid to become negligible it may be necessary to wait for weeks and even months after the drilling has stopped,
For a preliminary study of a thermal area, measurement of surface temperature gradient is indicative of possible flow of hot-water at depth. As mentioned earlier another indicator of subsurface temperature conditions is the mineral content of natural thermal water in the area, in particular the SiO₂ content of the water.

A few results of thermal measurements in boreholes are shown in Fig.3-5. Fig. 3 shows lines of equal temperature gradient near the surface in the Reykjavik thermal area, which is located within the city of Reykjavik, and Fig. 4 gives temperature-depth relations for a few boreholes in this area. The temperatures are formation temperatures in the undisturbed holes. The Reykjavik area is a low-temperature area with a base temperature of about 146°C as indicated by the deepest borehole in Fig. 4.

The surface gradient map shows two maxima which correspond to two main upflow zones from the deeper aquifers and which were both associated with natural surface thermal activity.

Fig. 5 shows temperature-depth relation for two boreholes in the Hengill thermal area, which is located about 50 km east of Reykjavik. This area is a high-temperature area where a maximum temperature of 232°C has been measured. The temperature-depth curves show maxima at 400-600 meters depth with a marked decrease in temperature at greater depth. A probable explanation of these maxima is that they are due to a more or less horizontal flow of water at a depth of 400-600 meters. A total of 8 boreholes 300 to 1,200 meters deep have been drilled in the Hengill area. A correlation of the depth of the maxima between these holes indicates increasing depth towards the northern part of the borehole area and this is presumably the direction from which the water gradually ascends to the surface.

b) The electrical resistivity method of thermal prospecting is based on the fact that the resistivity of rocks decreases with increasing temperature and increasing degree of thermal alteration. The method has mainly been used for a study of near surface formations down to a depth of 100-200 meters. Geological conditions in Iceland are often such, that hot-water ascending through the bedrock spreads out on reaching highly permeable near-surface formations, such as Postglacial alva flows or alluvial sediments, which may be tens of meters thick. Under such circumstances the upflow zone in the bedrock may not readily be detectable from the distribution of surface thermal activity. Electrical resistivity mapping will usually localize the upflow zone as a minimum resistivity area.
Fig. 6 shows an example of such a resistivity map for Saudárkrókur in northern Iceland. The area shown is at the shore of a small lake. Lines of equal apparent resistivity gave a minimum near the shore of the lake. A subsequent drilling at the minimum was successful.

Electromagnetic methods, which are commonly used in mineral prospecting, have as yet only been used on an experimental scale in thermal prospecting in Iceland.

**Indirect methods**

The indirect methods, which have been used in exploration of thermal areas in Iceland are a) magnetic, b) gravimetric and c) seismic methods. These methods furnish information on geological structure, which may be of use in locating thermal water channels.
a) The basalts in Iceland generally have a relatively strong remanent magnetization which is variable in strength and direction from one lava flow to another and probably to a lesser extent within single lava layers. Basalt dykes and other intrusions commonly have a magnetization different from the surrounding rocks. Anomalies of the earth's magnetic field near the surface are therefore frequently found above faults, dykes and other intrusions. As the flow channels in thermal areas are often associated with such structural features the magnetic method has been very useful in locating them where the bedrock is hidden under a surface cover of moraine and sediments.

b) The gravimetric method has been used to some extent for structural investigations. A regional survey of gravity has been made for the whole of Iceland (Einarsson, 1954). Mainly broader structural features of the flood basalts have been delineated with this method.

c) The seismic method has been used mainly for regional studies of the flood basalts (cf. Fig. 1) whose structure is believed to be closely related to the hydrothermal circulation systems. The thickness of the flood basalts is generally about 1.5 to about 4.0 km, and their longitudinal wave velocities vary from about 3.7 to 5.1 km/sec. The underlying substratum is little known and has a velocity of about 6.3 km/sec. It is believed to be largely impermeable to water.

Other methods

Of other methods that are used for the study of thermal areas, the isotopic method has been briefly mentioned earlier.

Besides regional studies of deuterium and tritium content of natural waters, experimental work is being done in areas with existing boreholes to study the subsurface thermal hydrology using radioactive iodine $^{131}$. This is injected into some of the holes, and the effect is studied in other holes. Such work may be of importance in estimating the potentialities of individual thermal areas under exploitation.
REFERENCES

Barth, T.F.W.: Volcanic Geology, Hot springs and Geysirs of Iceland, Carnegie Institution of Washington Publ, 587. 1950,


" " Physical Characteristics of Natural Heat Resources in Iceland, Jökull, Reykjavik, 11, 29-38, 1961,


Einarsson, Tr.: Über das Wesen der heissen Quellen Islands; Soc. Sci. Islandica, Reykjavik, 1942.


Sonder, R.: Studien über heisse Quellen und Tektonik in Island, Zürich, 1941.


Thorkelsson, Th.: On Thermal Activity in Iceland, Reykjavik, 1940.

Jón Jónsson:

GRUNDVATTEN OCH TEKTONIK I NÄRHETEN AV REYKJAVIK OCH HAFNARFJÖRÐUR. (Sammanfattning)

Beggrunden i området i fråga består till största delen av interglaciala, doleritiska lavor, som mestadels härstamma från en sköldvulkan, Borgarhólar öster om Reykjavik, men även postglaciala lavaströmmar täcka ett betydande område. I områdets norra del förekomma tertiära lavor och tuffer.

Hela området genomsättas av ett stort antal tektoniska sprickor och förkastningar med riktning nordöst sydväst. Det har visat sig att nära nog samtliga källor i dette område stå i samband med sprickorna. Så är t.ex., fallet om Gvendarbrunnar, som Reykjavik får sitt dricksvatten från och likaså om Kalúárbotnar där Hafnarfjörður tar sitt dricksvatten. Borrningar på skilda håll inom området tyda på att grundvattnenivån i den del av sprickzonen som genomsätter de post-tertiära bergarterna torde vara umgefar den samma, eller i varje fall variera obetydligt från plats till plats. Vidare har framkommit att mycket stora mängder utmärkt dricksvatten äro magaserade i detts spricksystem. Det anses därför att man i framtiden bör inriktta sig på att skaffa dricksvatten åt Reykjavik, Hafnarfjörður och andra städer i dess närtet med borrningar i den del av sprickområdet som genomsätter de interglaciala och postglaciala lavorna. Undersökningar har visat, att vad som är avgörande för grundvattenströmmarna i detta område äro förkastningar och tektoniska sprickor samt det predoleritiska landskapet d.v.s. det landskap som existerade innan de doleritiska lavorna började utbreda sig i området.

Undersökningar av grundvattenståndet och grundvattenströmmarna inom detta område äro därför av vital betydelse. En del självregistrerande peglar ha redan blivit uppstått genom Hydrologiska Byråns (Vatnamelningar) försorg och ett betydande antal undersökningsborrningar ha redan blivit gjorda av Reykjaviks Stads Vattenverk (Vatnsveita Reykjavíkur).
Dette kort la J. Jonsson frem på selve konferensen og ga videre følgende forklæringer.

Det förefaller sannolikt, att grundvattenströmmen i stort sett följer de tektoniska sprickorna, ifrån höglandet ut mot havet och att den är dirigerad av sprickorna. Som exempel kan anföras, att man kan följa en och samma förkastning från norra delen av Kaldidalur ända ut i havet på södra sidan av Reykjaneshalvön, en sträcka av något över 100 km. Man torde därför kunna räkna med att mycket stora mängder vatten är magasinerade i detta spricksystem och att grundvattenströmmen är så mäktig att någon risk för intrångande havsvatten icke föreligger även om borrningar göras ned till djup långt under havsytan. Som exempel kan nämnas att ett borrhål vid Skyggur nära Ellidavatn går ned till ett djup av mera än 200 m under havsytan och ett annat vid Kaldársel slutar vid ett djup av ca 900 m under densamma utan att några som helst spår av havsvatten observeras. I detta sammanhang kan även nämnas att det hittills djupaste borrhållet på Island, ett borrhål för varmvatten i Reykjavik, har ett djup av 2200 m. Det ligger endast ett tjugo meter över havsytan, men inga som helst spår av marin påverkan av ett eller annat slag har observerats där. Största delen av detta borrhål ligger dock i den tertiära basaltformationen emedan de förstnämnda, vad det förefaller, icka nå ned till tertiären. Det kan tilläggas att på Breidafjördur förekommer ett betydande antal, dels submarina heta källor, som föra färskt vatten.