The $\mathrm{H}_{2}-\mathrm{S}$ process for the production of heavy water

## by

G. Pálmasom

## The $\mathrm{H}_{2} \mathrm{~S}$-process <br> for the production of heavy water

This report gives the results of calculations on the $\mathrm{H}_{2} \mathrm{~S}$-process for heavy water production with a view to a possible application in a heavy water plant in Iceland: The details of the calculations are given in a fuller report in Icelandic.

The process is based on the fact that the equilibrium constant for the isotopic exchange reaction
$\mathrm{H}_{2} \mathrm{O}+\mathrm{HDS} \rightleftarrows \mathrm{HDO}+\mathrm{H}_{2} \mathrm{~S}$
varies considerably with temperature, decrasing with increasing temperature. The only information that seems to be available at present on the variation of the equilibrium constant with temperature is from a paper by A.E. Suess ${ }^{1}$ ), who gives the following expression:

$$
K(T)=\frac{[H D O]\left[H_{2} S\right]}{\left[H_{2}\right][1+D S]}=0,871 \cdot e^{\frac{592}{K T}}
$$

where $R$ is in cal/mole, ${ }^{\circ} \mathrm{K}$ and $T$ in ${ }^{c} K$. This expression for $K(T)$ is used here in all calculations.

Water and $\mathrm{H}_{2} \mathrm{~S}$ gas flow countercurrent to each other in two towers, one hot and one cold, as shown on fig. l. The water is enriched in D-content while flowing down the cold tower and depleted in the hot tower, where the $H_{2} S$ gas is enriched. It is economical to divide the plant into stages of successively smaller size as the $D_{2} O$ concentration in the water increases. The fist step is by far the largest and will mainly be considered here. In order to determine to calculate the equilibrium lines and the operating lines of the towers. The operating lines will be determined by economic considerations. The expression for the equilibrium lines has been derived by J. Spevack and has the following form:

1) A.E. Suess: Isotopenaustauschgleichgenwichte: FIAT Review of German Science, 1936-1946.

$$
y=\frac{(1+5)\left(1+K_{x H}\right) \alpha}{(1+H)\left(S+K_{X}\right)} \cdot X \equiv m \cdot X
$$

where $y, x$ are the mol fractions of $D$ in the gas and the liquid, $S$ is the solubility of $H_{2} S$ in water, $H$ is the humidity of the gas, $\alpha$ is the vapor pressure ratio of $H D O$ to that of $\mathrm{H}_{2} \mathrm{O}$, and $\mathrm{K}_{\mathrm{x}}=\alpha \cdot \mathrm{K}(\mathrm{T})$. The values of $S, H, \mathcal{A}, K(T)$ and $m$ for various temperatures are given in table $I$.

Table I.

| $\mathrm{T}^{\circ} \mathrm{C}$ | S | $\overline{\mathrm{H}}$ | $\mathrm{K}(\mathrm{T})$ | $\propto$ | c |
| ---: | :--- | :--- | :--- | :---: | :---: |
| 30 | 0,0311 | 0,0022 | 2,33 | 0,938 | 0,437 |
| 100 | 0,01283 | 0,0536 | 1,94 | 0,975 | 0,541 |
| 110 | 0,01187 | 0,0796 | 1,90 | 0,978 | 0,564 |
| 120 | 0,01150 | 0,1111 | 1,86 | 0,981 | 0,585 |
| 130 | 0,01131 | 0,150 | 1,83 | 0,984 | 0,608 |
| 140 | 0,01094 | 0,201 | 1,79 | 0,987 | 0,634 |

The operating lines for a cold and a hot tower can be shown to have the following slopes:
Cold tower:

$$
3_{k}=\frac{F}{G} \cdot \frac{1+S_{k}}{1+H_{k}}
$$

where $F$ is the water feed to the cold tower and $G$ is the $\mathrm{H}_{2} \mathrm{~S}$ flow in the cold tower. Index $k$ refers to the cold tower.
Hot tower:

$$
3_{h}=\left(\frac{F}{G}+H_{h}\right) \frac{l+S_{h}}{I+H_{h}}
$$

where index $h$ refers to the hot tower.
In order to determine the equilibrium lines and the operating lines it is necessary to find optimum values for tower pressures, tower temperatures, enrichment per stage, the ratio $\frac{F}{G}$ which determines $\beta_{k}$ and $\beta_{h}$, and a quantity $f$ which may be called the fractional approach to equilibrium and is defined in fig. 2. These are now considered one at a time.

Pressure. It is economical to have the pressure in the towers high in order to decrease their volume. The steam consumption also decreases with increasing pressure, because the amount of steam required to saturate the $\mathrm{H}_{2} \mathrm{~S}$ gas at a constant temperature decreases with increased total pressure. However, a pressure limit is set by the vapor pressure of $\mathrm{H}_{2} \mathrm{~S}$ liquid which at $30^{\circ} \mathrm{C}$ is $22,5 \mathrm{~atm}$. The pressure has to be kept safely below this value in order to prevent the $H_{2} S$-gas from liquifying. From this it seems plansible to assume an average pressure of 20 atm in a hot $\ddagger$ ower and 19 atm in a cold tower.

Temperature. It is desirable to have the temperature difference between the hot and the cold towers large in order to obtain a large recovery of $D_{2} O$ from the feed water. The lower temperature is limited by the possibility of $\mathrm{H}_{2} \mathrm{~S}$ hydrate formation $\left(\mathrm{H}_{2} \mathrm{~S}, 6 \mathrm{H}_{2} \mathrm{O}\right)$. Above $30^{\circ} \mathrm{C}$ this hydrate is not formed. The lower temperature is therefore chosen as $30^{\circ} \mathrm{C}$. Regarding the higher temperature, an economic balance has to be made between increased recovery and infeased steam consumption as the temperature is raised. Preliminary estimates seem to indicate that this value is around $120^{\circ} \mathrm{C}$, which will be used here. This is based on the very low cost of steam in Iceland ( $0,11 \$ /$ ton of $150^{\circ} \mathrm{C}$ steam). In other countries where steam cost is much higher the optimum hot tower temperature is lower and the recovery therefore less.

Enrichment per stage. By using many stages with a low enrichment in each the total volume of the towers of all the stages is decreased. On the other hand energy costs, pumps, pipes and heat exchanger costs are increased somewhat. An estimate seems to indicate that the total cost does not greatly vary with enrichment in the interval from 5 to 10. Here the enrichment per stage is chosen as 6 to 7 .

The ratio $F / G$. In order to determine the optimum value of this ratio we have to assume a value of $f$, and we here take $\mathrm{f}=0,985$. Then the number of theoretical plates in a hot and a cold tower can be calculated for various values of $F / G$. The optimum value of $F / G$ is chosen where the numbers of theoretical plates in a hot and a cold tower are equal, which is very near to the value for a minimum total number of plates in both hot and cold towers. Thus ( $F / G)_{\text {opt }}=0,470$ ( $F$ and $G$ in moles).

The fractional approach to equilibrium $f$. The optimum value of $f$ is determined by an economic balance between tower volume and steam consumption, using the above found values for tower pressure, temperature, enrichment per stage and the ratio $\mathrm{F} / \mathrm{G}$. It is assumed that Spraypak is used as tower packing and that (HETP) $=2$ feet. The tower cost per unit volume is about $800 \$ / \mathrm{m}^{3}$. Annual costs are assumed $15 \%$ of capital cost. The cost of steam is $\$ 0,11$ per ton at $150^{\circ} \mathrm{C}$ and is is further assumed that $50 \%$ heat recovery is obtained in heat exchangers. With the ${ }^{5}$ e assumptions the minimum total annual cost is obtained for $\mathrm{f}=0,989$.

It is now possible to draw the McCabe-Thiele diagram for the first stage of the plant and this is done in fig. 3. In order to be able to draw a flow diagram of the plant it is necessary to find the best arrangement of heat exchangers. In studying this the following conclusions have been reached.

1) It does not pay to use either gas-gas or gas-liquid heat exchangers. Liquid-liquid heat exchangers should be used to decrease steam consumption.
2) Where $\mathrm{H}_{2} \mathrm{~S}$ gas has to be cooled or heated and humidfied this is best done in a direct contact dehumidifier or humidifier. These could use Spraypak and be a part of the towers.

The flow diagram for the plant can now be drawn and this is done in fig. 4. The first stage towers would have to be divided into parallell units, but in other respects the diagram shows the main parts of the plant.



FIG. I.


FIG. 2.


